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Quantitative tomography for continuous variable quantum systems
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We present a continuous variable tomography scheme that reconstructs the Husimi Q-function
(Wigner function) by Lagrange interpolation, using measurements of the Q-function (Wigner func-
tion) at the Padua points, conjectured to be optimal sampling points for two dimensional recon-
struction. Our approach drastically reduces the number of measurements required compared to
using equidistant points on a regular grid, although reanalysis of such experiments is possible. The
reconstruction algorithm produces a reconstructed function with exponentially decreasing error and
quasi-linear runtime in the number of Padua points. Moreover, using the interpolating polynomial
of the Q-function, we present a technique to directly estimate the density matrix elements of the
continuous variable state, with only linear propagation of input measurement error. Furthermore,
we derive a state-independent analytical bound on this error, such that our estimate of the density
matrix is accompanied by a measure of its uncertainty.

Introduction—In modern implementations of quantum
information protocols, quantum state tomography [1, 2]
plays a key role. It allows for full characterization of un-
known quantum states, as well as verification of prepared
resource states. Continuous variable (CV) quantum sys-
tems have a wide range of applications in all areas of
quantum information, ranging from quantum communi-
cation to quantum computing [3]. The need for fast, effi-
cient quantum state tomography of CV systems is height-
ened by the continuing development of non-classical ra-
diation sources for quantum information [4–11], and by
recent developments in CV encodings of logical qubits
[12–14], as well as in quantum simulation with CV sys-
tems [15].

Quantum state tomography of CV systems typically
consists of measurement of a quasi-probability distribu-
tion, such as the Wigner or Husimi Q-function [3], from
which the density matrix can be reconstructed [16], and
this has been extensively demonstrated in experiment
[17–23]. Unfortunately, full tomography of the Wigner
or Q-function is inefficient, as a large number of mea-
surements is required to sample all of phase space. To re-
duce the number of sampled phase space points, more ad-
vanced tomographic schemes involve displacing the state
in phase space, and multiple measurements (ideally of the
full photon number distribution) at each displacement
[22, 24, 25]. For these schemes there is a trade-off be-
tween the number of measurement points in phase space,
and the number of operator expectation values measured
at each point.

In this Letter, we propose an efficient method to recon-
struct the full Wigner or Q-function via Lagrange inter-
polation, using only a small number of measured phase
space points. Our method can be applied on any grid of
phase space points, thus allowing for reanalysis of pre-
vious experiments. However, the best known points to
be measured are the so-called Padua points [26], which
are conjectured to be optimal sampling points for two
dimensional (2D) interpolation [27, 28]. Our scheme re-
quires only a single measurement at each sample point:

the Wigner or Q-function value. In addition, we show
how individual density matrix elements (including off-
diagonal elements) can be estimated from the interpola-
tion reconstruction of the Q-function, such that quantum
state tomography of a CV system can be performed di-
rectly, without statistical inference.

Background—It is well known that the Wigner and
Q-function can be measured through a combination of
coherent displacements and parity (Wigner) or ideal vac-
uum (Husimi-Q) measurements [16], i.e.

W (α) =
1

π

[
Π̂D̂(−α)ρD̂(α)

]
, (1)

Q(α) =
1

π
〈α|ρ|α〉 =

1

π
Tr
[
|0〉〈0|D̂(−α)ρD̂(α)

]
, (2)

where W (α) and Q(α) are the Wigner and Q-function,
D̂(β) = exp

(
βâ† − β∗â

)
is the usual displacement op-

erator, and Π̂ = (−1)
â†â is the parity operator. Parity

measurements can be implemented via interaction with a
qubit [18–23, 25], as can ideal vacuum detection [15, 17],
though this can also be done via photon subtraction mea-
surements [29–31], or heterodyne detection [32–34], even
of an itinerant state.

Experimentally, the first step of our method consists of
using one of the above techniques to measure the Wigner
or Q-function at the Padua points. Using the results of
these measurements, one can then reconstruct the full
quasi-probability distribution using Lagrange interpola-
tion, and, if the Q-function was measured, directly esti-
mate the density matrix elements of the measured state.

Inspired by the binomial codes of Ref. [14], we use the
test state

|ψ〉 = 1√
2

(|0̄〉+ i|1̄〉) =
1√
2

(
|0〉+ |4〉√

2
+ i|2〉

)
, (3)

to illustrate our tomography method, where |0̄〉 and |1̄〉
are the logical states for the lowest order binomial code of
Ref. [14], with |n〉 the usual n-photon Fock state. This is
a reasonable test state as it contain several non-zero den-
sity matrix elements of relatively large photon number,
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Figure 1. (Color online) A Exact Q-function of the ideal test state (c.f. Eq. (3)). B Raw data of Q-function measurements
taken on a 16× 16 equidistant grid. C A Lagrange interpolation from measurements made at 231 Padua points (white dots).
D Interpolation on an square grid (white dots) with non-polynomial preprocessing of the data. Both C and D accurately
reconstruct the ideal Q-function of A. E and F show the result of thresholding the interpolations to use only the 65 largest
magnitude measurements, in which case the Padua interpolation in E outperforms the equidistant grid in F.

and has both real and imaginary off-diagonal elements,
such that it tests our reconstruction algorithm under all
possible conditions. Note that we do not exploit the fact
that the test state is a finite superposition in the Fock
basis, unlike previous schemes [35]. Our method is suit-
able to any state of interest in CV quantum information,
such as squeezed states, see EPAPS [36].

We will now explain in detail both aspects of our to-
mography method, quasi-probability reconstruction and
density matrix element estimation, and show the results
of our method applied on the test state, including the
effects of finite measurement error.

Reconstruction of quasi-probability distributions—The
most naïve way to obtain a quasi-probability distribution
from measured data is to simply plot the measured val-
ues, and increase the number of sampled points until an
accurate reconstruction is obtained. In Fig. 1A we show
the exact Q-function for our test state, and in Fig. 1B
we show the result of plotting 256 sampled points (from
an equidistant 16 × 16 grid) of the Q-function. As can
be seen, Fig. 1B is a very poor reconstruction of the Q-
function, and increasing the number of sampled points
to improve the reconstruction requires a considerable in-
crease in experimental resources.

Instead, we propose that the Q-function (or Wigner
function) should be reconstructed by Lagrange interpo-
lation. The Q-function in particular is ideal because of its
smoothness, as it is known to be an analytic function [37].
Generally, interpolation is the problem of reconstructing
a function f from the knowledge of its values {vk}Nk=1

at N sampling points {αk}Nk=1. Using a finite number

N of such sampling points allows one to reconstruct the
Lagrange polynomial Ln[f ] which obeys

∀k Ln[f ](αk) = vk (4)

where n is the order of the polynomial, with N =
(
n+2
2

)
for a 2D function.

However, in general, any interpolated function will dif-
fer from the polynomial f∗n (of order n) closest to f in
uniform norm ||f ||∞ = supx |f(x)|. The choice of sam-
pling points A = {αk} can strongly affect the quality of
the reconstruction [38], and the quality of the sampling
points (more generally of the interpolation scheme Ln) is
captured by its operator norm, known as the Lebesgue
constant Λn, such that

||f − Ln(f)||∞ ≤ (1 + Λn)||f − f∗n||∞. (5)

It is well known [39] that the Chebyshev nodes are
asymptotically optimal sampling points in 1D, as their
Lebesgue constant scales logarithmically (Λn ∼ log(n)).
On the contrary, equidistant points have a Lebesgue con-
stant exponentially large in n, leading to artifact oscilla-
tions known as Runge’s phenomenon.

The Padua points are the 2D equivalent of the Cheby-
shev points [26], and are currently the best choice of
sampling points for 2D interpolation, since the have
the smallest known Lebesgue constant, scaling as log2 n,
which is expected to be optimal [27]. Moreover, the
Padua points have a simple generating curve, such
that their locations can be efficiently calculated, and
allow for efficient computation of the Lagrange poly-
nomial in time O(n2 log(n)), using a stable numeri-
cal scheme whose open-source Matlab implementation
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is available [40]. Note that this running time is linear
in the number of sampling points N (up to logarithmic
factors). This Padua interpolation technique is now in-
tegrated into standard 2D interpolation packages such as
Chebfun2 [41].

In Fig. 1C, we present the reconstructed Q-function
for our test state using 231 Padua points (indicated by
the white dots), which is an accurate reconstruction of
the exact state. It even captures the features of the Q-
function close to the origin, despite few sampling points
in that region, which we believe is due to the analyticity
of the Q-function: points away from the origin constrain
the higher-order derivatives of the function, leading to a
highly accurate reconstruction.

To compare to the Padua points, in Fig. 1D we consider
interpolation on a square grid of 256 points using Cheb-
fun2 [41], which performs non-polynomial pre-processing
on the sampled values before producing an interpolat-
ing polynomial, in order to reduce the error inherent to
equidistant interpolation [42]. Fig. 1C and Fig. 1D are
qualitatively similar, highlighting that any interpolation
is a powerful tool. However, there are practical reasons
why the Padua points are the better sampling set, as we
will now discuss.

Although the theoretical Q-function we aim to recon-
struct has only significant values on a rectangle whose
main axis is diagonal, we chose to use interpolation points
distributed on a square in order to avoid biasing the re-
construction method towards the test state. An alter-
native scenario is where one is reasonably certain of the
state beforehand and require only verification. This can
be done by thresholding, where we create a large grid of
Padua points, but then only measure at points where
we expect (based on our prior knowledge) the quasi-
probability to be above some threshold. To illustrate this,
we consider a grid of 231 Padua points, and manually
set to exactly zero all sampled Q-function values whose
absolute value is below 10−2. The resulting Fig. 1E is
very similar to Fig. 1C, but only requires 65 Padua point
measurements, which is a significant reduction of exper-
imental effort.

Performing a similar thresholding procedure on the
equidistant grid (keeping only the points with the 65
largest values) leads to Fig. 1F, which is clearly a bad re-
construction of the Q-function. The thresholded Padua
points cover more of phase space than the thresholded
equidistant points, allowing them to more accurately con-
strain the higher order derivatives of the function, which
explains their advantage in verification by thresholding.

The main advantage of the Padua points is that their
interpolated function has a quasi-exponentially decreas-
ing error as the number of points is increased, which is not
generally true for other point sets (including an equidis-
tant grid). This greatly benefits the method to estimate
the density matrix elements that we now introduce, as
it leads to very favorable error scaling, and an analytic

bound on the remaining error.
Direct estimation of density matrix elements—While

quasi-probability distributions give good qualitative de-
scriptions of CV states, for quantitative information one
wants the density matrix, which can be calculated using
either a linear inversion method, or by statistical infer-
ence [16]. Linear inversion methods are prone to error ac-
cumulation, and thus statistical inference methods, such
as maximum-likelihood reconstruction, are more com-
monly employed [16]. However, with statistical inference
it is difficult to assign a measure of confidence or error to
the calculated density matrix.

Instead, we directly estimate the density matrix ele-
ments, in the Fock basis, rather than a density matrix
close to the exact density matrix of the experimental
state. Our method uses the Lagrange interpolation re-
construction of the Q-function (calculated from measured
data), without the need for statistical inference. It does
not aim to return a trace one positive semidefinite matrix,
but rather estimates the density matrix elements, with
calculated bounds on the error in the estimate, based on
both input measurement error and the reconstruction er-
ror of our algorithm. Our method is related to pattern
function reconstruction using the Wigner function [16],
but by using the Q-function, it avoids many of the diffi-
culties inherent to pattern functions.

To calculate the density matrix elements of a state ρ
using our method, we first write them as

ρjk = Tr [|k〉〈j|ρ] = π

ˆ
Pjk(α)Qρ(α) dα, (6)

where Qρ(α) is the Q-function of the measured state, and
Pjk(α) is the Glauber-Sudarshan P-function representa-
tion of the operator |k〉〈j|, which in the Fock basis is
given by [43]

Pjk(α) =
Ck,j
2πr

er
2−i(j−k)θ

[(
− ∂

∂r

)j+k
δ(r)

]
, (7)

where α = reiθ in polar coordinates, and Ck,j =√
k! j!/ (2 (k + j)!), is a combinatorial factor. Eqs. (6)-(7)

transform the estimation of the density matrix elements
into estimating the derivatives of the sampled Q-function.
Inspired from a well-known procedure to optimally esti-
mate finite-differences on an arbitrary grid [44, 45], we
now show how to relate the Lagrange interpolating poly-
nomial to these derivatives.

The interpolation polynomial can be written in polar
coordinates

Qρ(r, θ) =
∑

0≤m≤n
−n≤p≤n

cm,pr
meipθ, (8)

where cm,p are the Q-function coefficients calculated from
measured data, and as before, n is the polynomial or-
der of the reconstruction. Using the reconstructed Q-
function of Eq. (8), and the P-function of Eq. (7) we
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obtain an expression for the calculated density matrix
elements

ρjk = Ck,j

j+k∑
q=0

q!dj+kq cq,(j−k), (9)

where dj+kq are state-independent constants. Evaluating
this expression requires only simple algebra on the coef-
ficients of the reconstructed Q-function, cq,(j−k), which
are efficiently calculated from the experimental measure-
ments. We stress that the other factors in Eq. (9), in-
cluding dj+kq and Ck,j , are state independent constants,
and can be efficiently computed once a priori.

To illustrate our method, we estimate the density ma-
trix of our test state |ψ〉 from Q-function measurements
at the Padua points. To quantify the error intrinsic to
Padua reconstruction, we define the relative reconstruc-
tion error

∆ρjk [N ] =

∣∣∣ρidealjk − ρjk[N, 0]
∣∣∣

ρidealjk

, (10)

where ρ [N, 0] is the estimated density matrix element
obtained from N Q-function measurements. The rela-
tive reconstruction error is plotted in Fig. 2 for all den-
sity matrix elements of our test state |ψ〉. As can be
seen, the estimated state becomes a better approxima-
tion to the actual state as N increases, with the general
trend a quasi-exponential decrease in error for large N .
While our method works for any polynomial approxima-
tion of the Q-function, this quasi-exponential scaling is a
result of the fact that the Padua points have logarithmic
growth of their Lebesgue constant [36]. In Sec. IV of the
EPAPS [36], we show the relative error versus N for an
equidistant grid and Chebfun2 interpolation; the error is
appreciably worse than for Padua interpolation.

Figure 2. (Color online) Relative reconstruction error (c.f.
Eq. (10)) as a function of the number of Padua points N , for
the density matrix elements of the test state of Eq. (3). The
error decreases exponentially for all density matrix elements
as N increases.

A higher degree polynomial reconstruction (more
Padua points) is required to accurately estimate ρjk for
larger j, k, as is seen in Fig. 2, where the components
with larger j, k have larger relative reconstruction error.
Thus, our method is most effective for finite superposi-
tions of Fock states, such as binomial code states [14], or
states with low average photon number. Alternatively,
the center of high quasi-probability can be found using
efficient adaptive schemes [46], and the state displaced to
the origin. Our method can then reconstruct the density
matrix elements of this new displaced state, from which
the elements of the original state can be calculated.

To accurately reflect imperfect experimental measure-
ments we introduce noise by adding to the sampled Q-
function values Gaussian random noise with zero mean
and standard deviation ε. As this noise is stochastic, each
reconstructed element ρjk[N, ε] will have a mean value
ρ̄jk[N, ε] = ρjk[N, 0] and a standard deviation σjk [N, ε],
which are functions of both the number of Padua points
N , and the noise level ε. To examine how input measure-
ment error propagates through our reconstruction algo-
rithm we can use the standard deviation, which we cal-
culate for a range of values of N , and input measure-
ment error ranging from ε = 10−5 to ε = 10−1 (see [36]
for further details). We find linear error scaling, i.e.,
σjk [N, ε] ∝ ε, indicating that our reconstruction algo-
rithm does not amplify the input measurement error by
more than a constant factor.

Input noise enters Eq. (9) of our reconstruction al-
gorithm as error in the coefficients cq,(j−k). As all
other terms in Eq. (9) are state-independent, propaga-
tion of this error through our algorithm will be state-
independent. Therefore, the calculated scaling law of
σjk [N, ε] for our test state is indicative of the scaling
law for all states.

Combining the previous results, our reconstruction
scheme gives an estimate ρjk[N, ε] for the element ρjk
such that

ρjk = ρjk[N, ε]±∆jk[N ]ρidealjk ± σjk[N, ε] (11)

where the first term in Eq. (11) accounts for the system-
atic bias in the estimate due to the absolute reconstruc-
tion error, and the second term describes the measure-
ment error due to input noise (assuming one standard
deviation error). As this expression shows, our scheme
not only calculates the estimated value ρjk[N, ε], but also
estimates the error, given by a linear sum of the absolute
reconstruction error and the measurement error.

The input noise, ε, can be measured experimentally by
benchmarking measurements of known states, and this
gives the measurement error, σjk[N, ε], up to a constant
factor that can be estimated from Eq. (9) [36]. The abso-
lute reconstruction error will be state dependent, and can
most accurately be calculated by numerical simulation.
Alternatively, one can iteratively increase the number of
Padua points until ρjk[N, ε] converges to within σjk[N, ε],
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which indicates that the measurement error is now dom-
inant and the reconstruction error can be ignored.

Conclusion—In this work, we have introduced a con-
tinuous variable tomography scheme for accurate and ef-
ficient reconstruction of quasi-probability distributions
using Lagrange interpolation. The only experimental re-
quirement is the ability to measure the quasi-probability
distribution, and if this is done at the Padua points, the
best sampling points among known families in 2D, our
scheme drastically reduces the number of measurements
required. Reanalysis of experiments for measurements
performed on other point sets is also possible, but for-
feits the error bounds guaranteed by using Padua points.

Using the reconstructed Q-function, we have further
shown how to estimate the system’s density matrix el-
ements, and bounded the error in this estimation. Re-
markably, the intrinsic reconstruction error (due to in-
terpolation) decreases exponentially with the number of
Padua points, while input measurement error is not am-
plified by more than a constant factor.

Our scheme will see immediate application in quan-
tum communication and computing protocols with opti-
cal or microwave fields, including cavity and circuit QED
setups, where it offers significant improvement over the
current state of the art. Additionally, our scheme may
have application in the characterization of ultra-fast elec-
tromagnetic pulses, such as in frequency-resolved optical
gating, or other autocorrelation techniques.
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