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Abstract: 

We show that band topology can dramatically change the photophysics of two-

dimensional (2D) semiconductors. For systems in which states near the band extrema are 

of multi-component character, the spinors describing these components (pseudospins) can 

pick up nonzero winding numbers around the extremal k-point. In these systems, we find 

that the strength and required light polarization of an excitonic optical transition are 

dictated by the optical matrix element winding number, a unique and heretofore 

unrecognized topological characteristic. We illustrate these findings in three gapped 

graphene systems – monolayer graphene with inequivalent sublattices and biased bi- and 

tri-layer graphene, where the pseudospin textures manifest into nontrivial optical matrix 

element winding numbers associated with different valley and photon circular 

polarization. This winding-number physics leads to novel exciton series and optical 

selection rules, with each valley hosting multiple bright excitons coupled to light of 

different circular polarization. This valley-exciton selective circular dichroism can be 

unambiguously detected using optical spectroscopy.   
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An exciton in a semiconductor is an excited state with an electron-hole pair bound 

by their mutual Coulomb interaction [1]. Owing to the similarity between the electron-

hole binding in a semiconductor and electron-proton binding in a hydrogen atom, the 

hydrogenic model and their variants (for example, including electron-hole-separation 

dependent screening effects) are usually adopted in describing excitons in various 

dimensions, when the electron-hole correlation length of the exciton of interest is large 

compared to the unit cell size. Within this picture, the envelope functions of the excitonic 

states are hydrogen-like wavefunctions with even or odd parity and characterized by a 

series of quantum numbers. In linear optical spectroscopy, an exciton may be created or 

annihilated by absorbing or emitting a photon, respectively. Such coupling is allowed if 

the full many-body excitonic states have different parity from the ground state (these 

states are called optically active or bright excitons). For conventional semiconductors in 

which the electron (hole) states in the conduction (valence) band extreme forming the 

exciton are of single orbital character, this parity law together with the hydrogenic picture 

leads to the well-known optical selection rules: in dipole-allowed materials (e.g., GaAs, 

monolayer transition metal dichalcogenide, etc.), s-like excitons are optically active, 

whereas p-like excitons are optically inactive [1-5]. In dipole-forbidden materials (e.g., 

Cu2O), the optically active excitons are p-like states, while s-like states are optically 

inactive [5, 6].  

However, for many reduced-dimensional systems of current interest, the states 

near the band extrema are of multiple orbital and spin components, and the bands can 

have nontrivial topological characteristics. Such nontrivial topological bands may be 

characterized by the behavior of the amplitudes of the components that compose a band 

state, viewed as a multi-component spinor (the pseudospin) in k-space.  The pseudospins 

of the electron and hole states can develop a complex texture with respect to the crystal 

momentum (࢑) around the band extrema [7-12]. The pseudospin texture (viewed as a 

spinor field of ࢑) could in principle affect the energy levels, optical selection rules, and 

many other properties of the excitons. Recent studies have shown that Berry curvature 

flux leads to a fine energy-level splitting of otherwise doubly degenerate hydrogenic 2p 

excitons in monolayer transition metal dichalcogenides [13, 14]. Yet, it remains 
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unexplored whether central properties such as the optical selection rules are altered in 

materials with topological band characteristics. 

We show here that the conventional optical selection rules, referencing to the 

exciton envelope functions, are not valid for systems with nontrivial band topology; they 

need to be distinctly replaced, incorporating topological effects. In the important class of 

2D materials in which the pseudospins of states near the band extrema gain a nonzero 

winding number (topological invariant) as the carrier adiabatically traverses around the 

extremal k-point (e.g., the K or K’ valley in gapped graphene systems), a highly 

unconventional exciton series appears and exhibits novel valley-dependent optical 

selection rules and other photo-activities. 

The exciton energies and wavefunctions in a semiconductor may be obtained 

from the solutions of the Bethe-Salpeter equation (BSE) of the interacting two-particle 

Green’s function [15]: 

࢑,௖ܧ࢑ௌ൫ܣ െ ࢑൯,௩ܧ ൅ Σ࢑ᇲ࢑ܣᇲௌ ൻܿݒ, ࢑หܭ෡௘௛หܿݒ, ࢑ᇱൿ ൌ ࢑Ωௌ, (1)ܣ

where ܧ௖,࢑ and ܧ௩,࢑ are quasiparticle energies of an electron in the conduction band and 

negative of the quasiparticle energy of a hole in the valence band, ࢑ܣ describes the k-

space exciton envelope function, and |ܿݒ, ࢑ۧ corresponds to a free electron-hole pair (a 

non-interacting interband transition state) at the point ࢑ in the Brillouin zone (BZ). ܭ෡௘௛ is 

the electron-hole interaction kernel, containing a direct electron-hole attractive screened 

Coulomb term and a repulsive exchange bare Coulomb term. Ωௌ is the excitation energy 

of the exciton eigenstate |ܵۧ. For notational simplicity, we only consider here a single 

conduction and a single valence band. Generalization to the multiband case is 

straightforward, and our explicit ab initio results given below were performed with 

multiple valence and conduction bands.  

The eigenstate of exciton ܵ is a coherent superposition of free electron-hole pairs 

at different k points, and is denoted by |ܵۧ ൌ Σ࢑ܣ࢑ௌ|ܿݒ, ࢑ۧ. The oscillator strength that 

relates to the intensity for optical transition to exciton ܵ is given by [1, 5, 15, 16], 
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I௘ௌ ൌ 2หΣ࢑ܣ࢑ௌࢋ ڄ ൻ߶௖,࢖|࢑ෝ|߶௩,࢑ൿหଶΩௌ , (2)

where ࢋ is the photon polarization unit vector, and ൻ߶௖,࢖|࢑ෝ|߶௩,࢑ൿ the interband optical 

matrix element between the conduction band state ห߶௖,࢑ൿ and valence band state ห߶௩,࢑ൿ.  
Although the exciton energies and oscillator strengths are physical observables 

and thus gauge-invariant, the individual components in Eq. 2 (the exciton envelope 

functions in k-space and the interband optical matrix elements) may separately look 

different depending on a chosen gauge. This ambiguity arises because |ܿݒ, ࢑ۧ could have 

an arbitrary phase, which would be canceled out by the complex conjugate of the same 

phase in ࢑ܣ. This gauge arbitrariness can be eliminated by requiring ࢑ܣ of the lowest 

energy s-like excitonic state to be that of a hydrogen-like s orbital. Under this well-

defined and smooth gauge, we find that an analysis of Eq. 2 illuminates clearly the 

physical role of the exciton envelope function and of the topological characteristics of the 

interband optical matrix elements in optical transitions. In dipole-allowed conventional 

semiconductors, the interband optical matrix elements are nearly a constant around the 

extremal k-point [1, 5]. Therefore, only s-like excitons have non-zero oscillator strength, 

as its envelope function in k-space is isotropic in phase (i.e., no phase winding around the 

extremal k-point). 

Having topologically nontrivial bands in 2D with associated pseudospin texture of 

nonzero winding numbers will lead to both magnitude and phase modulations of the 

interband optical matrix elements with ࢑, represented by a 2D vector field with a certain 

winding pattern. To illustrate this effect, we decompose the interband optical matrix 

element ൻ߶௖,࢖|࢑ෝ|߶௩,࢑ൿ into the two irreducible cylindrical components, ࢑݌ା ൌ ାࢋ ࢑ି݌ ࢑ൿ and,ෝ|߶௩࢖|࢑,ൻ߶௖ڄ ൌ ିࢋ ڄ ൻ߶௖,࢖|࢑ෝ|߶௩,࢑ൿ, which correspond to coupling to left- and 

right-circularly polarized photon modes (ିߪ and ߪା), respectively. For topologically 

nontrivial bands, as illustrated below, ࢑݌ା and ࢑ି݌ are typically non-zero (except 

possibly at the extremal k-point), and can be viewed as two vector fields that may differ 

in their winding patterns. (The interband optical matrix elements ࢑݌േ are complex 

quantities determined by the band states and independent of the specific excitonic states.) 
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We shall show that the transition strength (brightness) and the specific light 

polarization needed for an excitonic optical transition are dictated by the phase winding 

of the exciton envelope function and that of the interband optical matrix elements. For an 

excitonic state of which the k-space envelope function ࢑ܣ is a highly localized function 

around an extremal k-point (Wannier excitons), ࢑ܣ and ࢑݌േ  in the relevant small part of 

the BZ are dominated by a cylindrical angular phase dependence of ~ ݁௜௠ఏ࢑ and ݁௜௟േఏ࢑, 

respectively (࢑ߠ is the angle ࢑ made with respect to the x-axis) [1, 5]. Here, and in 

subsequent discussion, we shall define ࢑ as the wavevector measured from the extremal 

k-point. Thus, ݉ is cylindrical angular quantum number of the exciton envelope function 

and ݈േ are the winding numbers of ࢑݌േ. From Eq. 2, the oscillator strength for an optical 

transition to an excitonic state S by ߪേ  photon is 

Iఙേ ௌ ൌ 2หΣ࢑݂ሺ|࢑|ሻ݁௜ሺ௠ା௟טሻఏ࢑หଶΩௌ , (3)

where ݂ሺ|࢑|ሻ is the radial part in the summation. Iఙേ ௌ  is thus non-zero only when ݉ ൌെ݈ט. 

This set of selection rules is distinctly different from that in conventional semiconductors. 

For a system with discrete n-fold rotational symmetry, the general selection rule is: ݉ ൌ െ݈ט ሺmod ݊ሻ. (4)

 (A generalization to systems with discrete rotational symmetries is given in the 

Supplementary Information Section I.) As a result, excitons with different angular 

quantum numbers (i.e., different ݉) would couple differently to ࢑݌ା and ࢑ି݌, causing 

multiple bright excitons each accessible by ିߪ or ߪା photons. We note that Eq. 4 thus 

incorporates and generalizes the conventional selection rules for Wannier excitons to all 

2D semiconductors. 

An ideal set of materials to illustrate the predicted novel excitonic physics is the 

gapped graphene systems, in which a bandgap and a layer-number-dependent pseudospin 

texture emerge from an induced broken inversion symmetry that may be tuned. We 

consider three (already experimentally achieved) systems based on 1 to 3 layers of 

graphene [17-20]. For monolayer graphene, inversion symmetry is broken by placing the 
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graphene layer on top of a monolayer of hexagonal boron nitride. (Details in 

Supplementary Information Section II). For bilayer (in a Bernal stacking order) and 

trilayer graphene (in a rhombohedral stacking order), inversion symmetry is broken by 

applying an external electric field along the out-of-plane direction. In our ab initio GW-

BSE calculations presented below, the applied electric field was set to 0.13 eV/Å, an 

experimentally studied value [19]. Modifying the applied electric field strength, which 

determines the size of the induced bandgap, does not change the physics discussed here. 

For the gapped graphene systems studied, density functional theory (DFT) 

calculations are performed within the local density approximation (LDA) formalism 

using the Quantum ESPRESSO package [21] to determine their ground-state properties. 

First-principles GW [22] and GW-BSE [15] methods are employed to calculate the 

quasiparticle band structure and excitonic states, respectively, using the BerkeleyGW 

package [16]. (Details in Supplementary Information Section II.) 

The gapped graphene systems of 1, 2, and 3 atomic layers studied have GW 

quasiparticle bandgaps of 130 meV, 159 meV, and 185 meV [Fig. 1(a-c)], respectively. 

These values are much larger than their corresponding DFT-LDA Kohn-Sham bandgaps 

of 62 meV, 90 meV and 118 meV, respectively, owing to electron self-energy effects. For 

biased bilayer and trilayer graphene, the top valence and bottom conduction bands at the 

K and K’ valleys develop a Mexican-hat-like shape. The pseudospin texture of the states 

in bilayer graphene is schematically shown in Fig. 1d, where the amplitude of the carbon 

π orbitals develop a phase winding around the band extremum [23].  

The very different pseudospin texture of the bands in the three gapped graphene 

systems gives a strong layer-number and valley-index dependent interband optical matrix 

element winding pattern for each. We show in Fig. 2 the winding pattern of ࢑݌ା and ࢑ି݌ 

in the K valley, defined using the gauge procedure as describe above. In the plot, the 

complex quantity ࢑݌ା or ࢑ି݌ (which is given by a magnitude and a phase ߶࢑) are 

represented by an arrow with its length proportional to the magnitude and its orientation 

pointing along the direction with angle ߶࢑ to the x-axis. In monolayer graphene with 

inequivalent A/B sublattices [Fig. 2a, b], ࢑݌ା is nearly constant in magnitude and phase 

(arrows with constant length and orientation) and has a winding number = 0 for any 
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contours enclosing K, whereas ࢑ି݌ is much smaller in magnitude and its phase (the 

orientation of the arrows) winds clockwise around the K point twice after completing any 

contour enclosing K (winding number = -2). This analysis, making use of the selection 

rules deduced above, predicts an optically active s exciton series, as well as a weakly 

active d exciton series. In biased bilayer graphene, the pseudospin texture [Fig. 1d] leads 

to a winding number = 1 for the interband optical matrix element ࢑ି݌ [Fig. 2e]. 

Compared with ࢑݌ ,࢑ି݌ା is much smaller in magnitude [Fig. 2d], but remains constant in 

both magnitude and phase around the K point (winding number = 0). We therefore 

predict: (i) unlike the case of gapped monolayer graphene, the p exciton series is now 

optically very active; (ii) the s exciton series are still somewhat optically active, but 

having a much smaller oscillator strength than the p exciton series; and (iii) importantly, 

the photo-excitation of the s excitons and p excitons at a given valley (K or K’) requires 

opposite circular polarization in biased bilayer graphene. The interband optical matrix 

elements in biased trilayer graphene have even more features [Fig. 2g, h], leading to a 

winding number of 1 and 2 for ࢑݌ା and ࢑ି݌, respectively, at the K valley. (Details in 

Supplementary Information Section III.) The 1s exciton envelope functions of the three 

gapped graphene systems studied are shown in Fig. 2c, f, and i. Our new selection-rule 

predictions based on topological effects are completely borne out by our explicit GW-

BSE calculations of the optical absorption spectra.   

The physics of interband optical matrix element winding thus leads to novel 

exciton series in the gapped graphene systems, with each valley hosting multiple 

optically active excitons whose creation requires different circular polarization. We show 

in Fig. 3 the calculated energy levels, required circular polarization, and oscillator 

strength of the first six lowest-energy excitons in the K- and K’-valley of each system. 

The calculated binding energies of the lowest energy exciton state of the 1-, 2-, and 3-

layer systems are 34 meV, 52 meV, and 45 meV, respectively. In gapped monolayer 

graphene with inequivalent sublattices [Fig. 3a], as expected, the s-like excitons are 

optically bright. The 1s exciton in the K and K’ valleys can be selectively excited by ିߪ 

and ߪା light, respectively, similar to monolayer transition metal dichalcogenides [24-28]. 

In biased bilayer graphene [Fig. 3b], however, the optically most active exciton becomes 

a 2p state that is located at 13 meV above the lowest energy 1s state, with an oscillator 
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strength ~ 20 times larger than that of the 1s exciton. Moreover, the circular polarization 

for excitation of the 2p state is opposite to that of the 1s state, a feature that is directly 

predicted from the interband optical matrix element winding patterns depicted in Fig. 2d 

and Fig. 2e. In the biased trilayer graphene [Fig. 3c], the lowest energy 1s exciton is 

optically inactive from the matrix element winding patterns in Figs. 2g and 2h. Due to a 

significant deviation of the band dispersion from a parabola, we are no longer able to 

associate the higher energy excitonic states with a clear principal quantum number. 

However, a pair of nearly degenerate excitons with p-like and d-like orbital characters 

could still be identified, located at ~ 9 meV above the 1s state. They are excitable with ߪା 

polarized light, and couple strongly (optically bright) to the ground state via ࢑ି݌ in Fig. 

2h, either directly or through a trigonal warping effect. (There is also a weakly active p-

like exciton at ~ 4 meV above the 1s state. Details in Supplementary Information Section 

III.) In all three cases, the circular polarization for excitation of every bright exciton in 

the K’-valley is opposite to that of a degenerate-in-energy counterpart in the K-valley due 

to time-reversal symmetry.  

We now show how our predicted novel 2D excitonic physics may be 

experimentally verified by polarization-resolved optical spectroscopy. As phonon-

assisted intravalley exciton energy relaxation is much more efficient than phonon-assisted 

intervalley exciton energy relaxation [25, 29-31], optically created excitons in one valley 

will predominantly relax to the lowest energy exciton in the same valley (details in 

Supplementary Information Section IV). Taking biased bilayer graphene as an example, 

resonant ିߪ excitations of the K-valley 1s exciton will induce a ିߪ photoluminescence 

from the excited excitons themselves, whereas resonant ିߪ excitations of the K’-valley 

2p exciton will induce photoluminescence from the K’-valley 1s exciton following 

energy relaxation from the 2p state to the 1s state. As the optical circular polarization 

associated with the 1s exciton is opposite to that of the 2p exciton in the same valley [Fig. 

3b], the latter excitations would produce a ߪା photoluminescence. This predicted new 

phenomenon in biased bilayer graphene is distinctly different from the behavior of 

photoluminescence in monolayer transition metal dichalcogenides or gapped monolayer 

graphene [24-27], because the circular polarization of the luminescence light for the 
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former would depend not only on the polarization of the incident light, but also on the 

excitation energy (i.e., whether it is in the range of the 1s or 2p exciton energy).  

In summary, we have presented the discovery of a set of new unifying optical 

selection rules as well as results of novel exciton series arising from band topological 

effects in 2D semiconductors. All 2D systems, with or without nontrivial band topology, 

have optical selection rules given by Eq. 4 replacing the conventional ones for Wannier 

excitons. Owing to the Poincaré–Hopf theorem, which in the present context states that 

the sum of the winding numbers from all band extrema in the 2D BZ should equal to zero 

(the Euler characteristics of a 2D torus), one should look for manifestations of 

nonconventional selection rules in the excitonic spectra of multi-valley 2D materials. Our 

work reveals another important manifestation of band topology in the physical properties 

of materials; it also open opportunities for use of these effects in gapped graphene 

systems for potential valleytronic applications. 
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Figures 

 

FIG. 1. Calculated band structure and orbital phase winding of gapped graphene systems. 

Bottom conduction band and top valence band of monolayer graphene with broken A/B 

sublattice symmetry (a), biased Bernal-stacked bilayer graphene (b), and biased 

rhombohedral-stacked trilayer graphene (c). Red solid lines and black dashed lines are 

GW and DFT-LDA bands, respectively. The K point is set at k = 0. Positive and negative 

k values denote the K-Γ and K-M direction, respectively. (d) Orbital pseudospin phase 

winding in biased bilayer graphene. Inset: structure of biased bilayer graphene. The 

carbon atoms forming bonds with a neighboring layer are colored black.  
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FIG. 2. K-valley interband optical transition matrix elements and 1s exciton envelope 

function in k-space. The K point is placed at the origin. Optical interband transition 

matrix element and its winding number for light of (a) left circular polarization pk+ and (b) 

right circular polarization pk- in monolayer graphene with inequivalent sublattices. The 

direction and length of an arrow denote respectively the phase and the magnitude of the 

corresponding matrix element. (d) pk+ and (e) pk- in biased bilayer graphene. (g) pk+ and 

(h) pk- in biased trilayer graphene. (c, f, i) 1s exciton envelope function in k-space in 

gapped monolayer graphene, biased bilayer graphene, and biased trilayer graphene, 

respectively. The envelope functions show the magnitude of the free electron-hole pair 

excitation at each k, normalized to its largest value in each plot. 
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FIG. 3. K-valley and K’-valley exciton energy levels and valley-exciton selective circular 

dichroism in (a) monolayer graphene with inequivalent A/B sublattices, (b) biased bilayer 

graphene, and (c) biased trilayer graphene. Left (right) part of each panel depicts the K-

valley (K’-valley) exciton energy levels. The first six lowest-energy excitons are shown 

in each plot. Black lines indicate dark states (with maximum oscillator strength < 1% of 

the brightest exciton in each plot). The oscillator strength (I) of each bright state is 

expressed in terms of that of the brightest state, for unpolarized light. Blue and red lines 

(or circles) indicate bright states with left and right optical circular polarization, 

respectively.  

 

 

 

 

 

 

 

 



13 
 

References 

[1] M. L. Cohen and S. G. Louie, Fundamentals of Condensed Matter Physics 
(Cambridge University Press, 2016). 
[2] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. 
Reichman, M. S. Hybertsen, and T. F. Heinz, Phys. Rev. Lett. 113, 076802 (2014). 
[3] K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, Phys. Rev. 
Lett. 113, 026803 (2014). 
[4] Z. Ye, T. Cao, K. O'Brien, H. Zhu, X. Yin, Y. Wang, S. G. Louie, and X. Zhang, 
Nature (London) 513, 214 (2014). 
[5] R. J. Elliott, Phys. Rev. 108, 1384 (1957). 
[6] E. F. Gross, Nuovo Cimento Suppl. 3, 672 (1956). 
[7] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010). 
[8] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011). 
[9] E. McCann and M. Koshino, Rep. Prog. Phys. 76, 056503 (2013). 
[10] M. Sui et al., Nature Phys. 11, 1027 (2015). 
[11] L. Ju et al., Nature (London) 520, 650 (2015). 
[12] F. Zhang, A. H. MacDonald, and E. J. Mele, P. Natl. Acad. Sci. USA 110, 10546 
(2013). 
[13] J. Zhou, W.-Y. Shan, W. Yao, and D. Xiao, Phys. Rev. Lett. 115, 166803 (2015). 
[14] A. Srivastava and A. Imamoglu, Phys. Rev. Lett. 115, 166802 (2015). 
[15] M. Rohlfing and S. G. Louie, Phys. Rev. B 62, 4927 (2000). 
[16] J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and S. G. Louie, 
Comput. Phys. Commun. 183, 1269 (2012). 
[17] W. Bao et al., Nature Phys. 7, 948 (2011). 
[18] C. H. Lui, Z. Li, K. F. Mak, E. Cappelluti, and T. F. Heinz, Nature Phys. 7, 944 
(2011). 
[19] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. 
Shen, and F. Wang, Nature (London) 459, 820 (2009). 
[20] R. V. Gorbachev et al., Science 346, 448 (2014). 
[21] P. Giannozzi et al., J. Phys. Condens. Mater. 21, 395502 (2009). 
[22] M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986). 
[23] C.-H. Park and S. G. Louie, Nano Lett. 10, 426 (2010). 
[24] T. Cao et al., Nat. Commun. 3, 1882 (2012). 
[25] K. F. Mak, K. He, J. Shan, and T. F. Heinz, Nature Nanotechnol. 7, 494 (2012). 
[26] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 
(2012). 
[27] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nature Nanotechnol. 7, 490 (2012). 
[28] T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Phys. Rev. B 92, 085413 
(2015). 
[29] J.-A. Yan, W. Y. Ruan, and M. Y. Chou, Phys. Rev. B 77, 125401 (2008). 
[30] X. D. Xu, W. Yao, D. Xiao, and T. F. Heinz, Nature Phys. 10, 343 (2014). 
[31] J. Xiao, Z. L. Ye, Y. Wang, H. Y. Zhu, Y. Wang, and X. Zhang, Light Sci. Appl. 4, 
e366 (2015). 

 


