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We developed quantum hydrodynamics of inner waves in the bulk of fractional quantum Hall
states. We show that the inelastic light scattering by inner waves is a sole effect of the gravitational
anomaly. We obtained the formula for the ‘oscillator-strength’, or ‘mean energy’ of optical absorption
expressed solely in terms of independently measurable static structure factor. The formula does not
explicitly depend on a model interaction potential.
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Introduction Excitations in the bulk of FQH state are
neutral modes of density modulations. These modes are
generally gapped. Evidence of collective modes were
seen in inelastic light scattering [1, 2]. The numerically
obtained spectrum of small systems [3, 4], also shows a
dispersive branch of a collective excitation.

Experimental accessibility of dispersion of neutral
modes of FQH states calls for a better understanding
of inner waves. There is a renewed interest to the sub-
ject. Some recent papers are [7].

Here we show that inelastic light scattering by inner
FQH waves is a sole effect of the gravitational anomaly.
This observation gives a geometric interpretation to in-
ner waves, and also a new formula for the ‘oscillation
strength’ of optical absorption ∆k.

The gravitational anomaly only recently entered the
QHE literature (e.g., [10]). It is an elusive phenom-
ena which appeared as a higher order gradient correc-
tion to bulk transport coefficients [23]. What would
be clean, experimentally accessible bulk effects of the
gravitational anomaly? We argue that the gravitational
anomaly governs one of the major observable in FQH,
the inelastic light scattering.

A natural approach to studying inner waves is hydro-
dynamics. It goes back to the seminal paper [5] Girvin,
McDonald and Platzman (GMP). Our analysis is based
on more recent development of FQH hydrodynamics [8]
(see, also [9]). As the GMP theory, the recent hydrody-
namics approach has roots in a similarity between FQH
states and a superfluid, but with the essential addition:
the superfluid is rotating and incompressible.

We briefly describe the central point of the paper. The
correspondence [8] between FQHE and a superfluid
identifies electrons with quantized vortices in a fast ro-
tating incompressible superfluid. Such hydrodynamics
can be reformulated as Helmholtz law (see, e.g., [12]):
vortices of an incompressible flow are frozen (or pas-
sively drugged by) the flow. Since vortices represent
electrons they could be probed by light. Then, the
Helmholtz law forbids inelastic light scattering. Being

perturbed by light, vortices instantaneously change the
flow and remain frozen into a new flow. They can not
accelerate against the flow.

Our main observation is that the quantization subtly
corrects the Helmholtz law through the gravitational
anomaly. The inelastic light scattering is the effect of
this correction.

The gravitational anomaly comes to the stage to pre-
vent a quantization schemes to violate diffeomorphism
invariance, the relabeling symmetry of the fluid. It is
quite remarkable, that optical probes directly test this
fundamental symmetry.

Hydrodynamic description of inner FQHE waves faces
a long standing problem of quantizing of incompressible
hydrodynamics, specifically the flows with an extensive
vorticity, the chiral flows. Accounting the gravitational
anomaly described below, represents, perhaps the first
consistent quantization of incompressible flows, whose
applications go beyond QHE.

Before we proceed, an important comment about spec-
trum of incompressible waves is in order. The GMP the-
ory [5] adopted variational approach initially developed
by Feynman for the superfluid helium [6]. The GMP’s
approach assumes that a certain two-body Hamiltonian
H =

∑

q Vqρqρ−q, where ρq is the electronic density
mode, indeed, delivers FQH state. Then it assumes
that excitations include a single mode density modu-
lation |k〉 = ρk|0〉, and interprets the diagonal matrix

element of the Hamiltonian ∆k = 〈k|H|k〉
〈k|k〉 as a varia-

tional approximation to the excitation spectrum. The
net result is expressed in terms of a model potential Vq .

Such approach is justified for compressible fluids, like
helium, where atomic density modulation, is a linear
wave. In this case a single-mode |k〉 = ρk|0〉 is a long
lived state. Contrary to GMP’s major assumption, a
single-mode state does not approximate a long-lived ex-
citation of incompressible fluids, such as of FQHE. A
reason for it is that incompressible waves are essentially
nonlinear. A single-mode state decays into multiple
modes, does not have a spectrum, and ∆k has no di-
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rect relation to true excitations, as it seems commonly
accepted in the literature.

Still, we argue that ∆k could be measured in optical
absorption and give a new formula for ∆k in terms of
the structure factor. It refines the GMP formula which
expresses ∆k in terms of model potential Vq.

Correspondence between FQH-states and fast rotating
superfluid The analogy between Laughlin’s states and
a superfluid was suggested in [5, 9], and developed to
a correspondence in [8]. In short, a drift of vortices in
a fast rotating superfluid and a motion of electrons in
FQH regime are governed by same equations.

Fast rotating superfluid is a dense media of same sense
vortices with a quantized circulation, which we denote
by 2πΓ. The total vorticity of the fluid is compensated
by a solid rotation with a frequency Ω, such that the
mean density of vortices is ρ0 = Ω/(πΓ). We assume
that vortices are in a liquid phase (do not crystallize).
The frequency of rotation Ω corresponds to the Lar-
mor frequency Ω = eB/2m∗ with an effective mass m∗.
The ‘mass’ is the only phenomenological parameter of
the theory determined by the spectral gap. Its energy
scale is the Coulomb interaction ~Ω ∼ e2/ℓ, where
ℓ =

√

~/eB is the magnetic length. Then vortices cor-
respond to electrons if the vortex circulation in units of
~/m∗ is the inverse of the filling fraction and the gap
in the spectrum is of the order of ~Ω

Γ =

(

~

m∗

)

ν−1, Ω =
eB

2m∗
. (1)

This correspondence differs from that of GMP [5]. The
authors of [5] referred to the work of Feynman [6], who
considered atomic density modes of a compressible su-
perfluid at rest. Rather, we discuss the modes of vor-
ticity of rotating incompressible superfluid [24].

We will measure distance in units of magnetic length
and the energy (the bulk gap) in units of the 2~Ω, set-
ting ℓ = ~ = m∗ = 1. In these units, the mean density
ρ0 = 1/(2πΓ) = ν/2π.

Helmholtz law Hydrodynamics of a 2D incompress-
ible flow can be cast in the Helmholtz form: material
derivative of vorticity vanishes. If u = (ux, uy) is veloc-
ity of a flow, ω = ∇×u is the vorticity, Dt = ∂t+u ·∇
is the material derivative, and the fluid is incompress-
ible ∇ ·u = 0, then the Euler equation in the Helmholtz
form reads

Dtω = 0. (2)

In the context of FQH vorticity is identified with the
electronic density. In a rotating frame with no net vor-
ticity the correspondence reads

ρ(r) = ρ0 +
1

2πΓ
ω(r). (3)

The velocity of the flow u, does not have a measurable
analog in FQHE. It could be thought as a transversal
part of the fictitious gauge field attaching a flux of mag-
netic field to electrons.

It is quite remarkable that essential features of Laugh-
lin’s states are encapsulated in the quantum Helmholtz
equation. We will see some of it now.

The Helmholtz law reflects a geometric meaning of hy-
drodynamics: incompressible flows are generated by a
successive action of volume preserving diffeomorphisms.
In QHE this concept has been suggested in [14]. There-
fore, FQH inner waves, and the equivalent problem of a
quantum hydrodynamics, both, seen as a problem of the
quantization of the group of volume preserving diffeo-
morphisms. This group is generated by density modes
operators ρ̄k=

∫

e−ik·rρ̄(r) d2r, with the algebra

[ρ̄k, ρ̄k′ ] = iekk′ ρ̄k+k′ , (4)

with the structure constants ekk′ = k×k′. On the torus
they are ekk′ = 2e

1
2
(k·k′) sin(12k×k′). Here we used bar

to emphasize quantization as in [5]. The classical limit
of (4) is the Poisson brackets of hydrodynamics [15].

Nonlinear waves Few important properties already
follow from (2). A well-known fact is that the 2D incom-
pressible hydrodynamics does not assume linear waves.
In the language of quantum theory, this means that sin-
gle density modes are not long-lived states.

However, the Euler equation can be linearized about
an inhomogeneous background. If we impose a periodic
density modulation |k0〉, then on top of it, there are lin-
ear waves ρq−k0

|k0〉 = ρq−k0
ρk0

|0〉. This suggests that
in contrast to a single-mode, the 2-modes states do have
a spectrum. This assertion agrees with the interpreta-
tion of inelastic light scattering experiments of Pinczuk
et all [1] as Raman type 2-modes process by He and
Platzman [4]. We address the spectrum of inner waves
elsewhere.

Another consequence mentioned already is: Helmholtz
law prohibits absorption of light. We show how this
problem is resolved by the quantization.

Quantization of Euler equation Quantization of Eu-
ler equation meets essential difficulties. The advection
term u · ∇ω = ∇(u·ω) where two operators sit at the
same point requires a regularization. The problem in a
general setting has a long history of failures and com-
monly considered nearly impossible. A scheme of regu-
larization where points are split u(r+ ǫ

2 ) ·ω(r− ǫ
2 ) leads

to inconsistencies. The difficulty is that the point split-
ting distance, itself depends on the flow ǫ[u]. Hence, a
regularization scheme is specific to the flow and can not
be practical to all varieties of flows at once. However, if
the flow consists of a dense media of vortices, the chiral
flow, the quantization could be achieved. In this case,
a variable short distance cut off is the distance between
vortices ǫ ∼ 1/

√
ρ.
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We will use the complex notations. We denote the com-
plex velocity by uz = ux − iuy and use the stream func-
tion ψ and the traceless part of the fluid momentum
flux tensor Πij = uiuj − 1

2δiju
2. In complex coordi-

nates uz = 2i∂zψ and Πzz = u2z . We will write the
advection term as

u ·∇ω = i[∂2zΠz̄z̄ − ∂2z̄Πzz ]. (5)

Hence, we have to give a quantum meaning to u2z. For
that we recall a notion of the projected density operator.

Normal ordering and quantization States on the low-
est Landau level (LLL), and also flows of rotating su-
perfluid, are realized as Bargmann space [5, 18]. It is a
space of holomorphic functions with the inner product
〈g|f〉 =

∫

e−
1
2
|z|2 g∗(z̄)f(z)dzdz̄. The density opera-

tors acting in the Bargmann space obeying the alge-
bra (4) are realized by the normally ordered operator

ρ̄k =
∑

i e
− i

2
kz†

i e−
i
2
k̄zi , where k is a complex wave vec-

tor, and z†i = 2∂zi . GMP called it projected (onto LLL)
density operator. It is organized such a state |k〉 = ρ̄k|0〉
is holomorphic, hence belongs to LLL. It is also chiral
ρ†k = ρ̄−k. Similarly, the 2-modes operator entered the
momentum flux tensor on the Bargmann space is repre-
sented by normal ordered string

ρkρk′ =
∑

i,j

e−
i
2
kz†

i e−
i
2
k′z†

j e−
i
2
k∗zie−

i
2
k′∗zj . (6)

The projected density modes generate coherent states
of LLL, and also states of rotating superfluid if zi is a
coordinate of a vortex.

The next step is to express momentum flux tensor on
the Bargmann space by the generators ρk. We get an
insight by computing it for the ground state where the
density is uniform.

We denote the Wick contraction AB = AB − Ā B̄ and
compute uu. The contraction of 2-density modes follows
from (6)

ρkρk′ = Nδk+k′,0(1− e−
1
2
k2

). (7)

Equivalently the contraction of two stream functions is

ψ(r)ψ(r′) =
2π

ν

∫

eik·(r−r
′)
[1− e−

1
2
k2

k4

] d2k

(2π)2
. (8)

Now we can compute uz(r)uz(r
′) = −4∂z∂z′ψ(r)ψ(r′).

In the hydrodynamic limit (|r−r′| ≫ ℓ) uz(r)uz(r
′) ∼

(z − z′)−2. As r → r′ the net result is zero due to the
rotational symmetry. Effect of short distance regular-
ization does not show up.

Gravitational anomaly in hydrodynamics Now we ex-
tend these calculations when u2z is sandwiched between
two flow states with a non-uniform density. In this case

the cut-off as r → r′ is not uniform. The result fol-
lows from the geometric interpretation of the fluid flow.
In this picture the distance between particles (vortices)
is interpreted as a metric ds2 = ρ|dz|2 of an auxiliary
evolving Riemann surface. The scalar curvature of this
surface is

R = −4ρ−1∂z∂z̄ log ρ. (9)

The distance between particles is invariant under a
change of coordinates, or by relabeling particles. In hy-
drodynamics, this fictitious symmetry typically applied
to fluid atoms. In our approach, it is a relabeling sym-
metry of vortices. We want to keep it in quantization.

To proceed, we notice that in the hydrodynamic limit
the contraction of stream functions (8) is the Green
function of the Laplace operator

ψ(r)ψ(r′) =
π

ν
G(r, r′). (10)

It is natural to assume that in a flow state the con-
traction is the Green function of the Laplace-Beltrami
operator in the metric ρ|dz|2. Then the problem is re-
duced to a covariant regularization of the Green function
as r → r′. Such regularization identifies the short dis-
tance cut-off with the geodesic distance d(r, r′). With
this prescription we define the Wick contraction of the
momentum flux tensor Πzz = u2z as a limit

uu =
4π

ν
lim
r→r′

∂z∂z′

[

G(r, r′) +
1

2π
log d(r, r′)

]

. (11)

The result of this limit is known: it is the Schwarzian
of the metric (Supplemented Material (SM))

uu =
1

6ν

(

∂2z log ρ−
1

2
(∂z log ρ)

2

)

. (12)

Then the contraction of the advection term (5) is ex-
pressed through the curvature (9)

u ·∇ω =
1

96π
∇R×∇ω. (13)

This is the main result of the quantization [25]. We
can now treat the hydrodynamics as a field theory, with
a constant cut-off, independent on the flow. With the
help of (13) we obtain

Dtρ̄ =
1

96π
∇R×∇ρ̄. (14)

If waves are small and long, R ≈ −ρ−2
0 ∆ρ, the cor-

rection to the Helmholtz law could be treated in the
harmonic and long-wave approximation

Dtρ̄k =
π

24ν2

∑

q

q2(k × q)ρ̄q ρ̄k−q. (15)
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Deviation from Helmholtz law Implication of quan-
tum corrections is that Helmholtz law held for quantum
operators does not hold for their matrix elements: mate-
rial derivative for the projected density mode (14) does
not vanish. Acceleration of particles against the flow
appears as quantum corrections, but, as we will see, it
is the only source for the light scattering. The universal
departure from the Helmholtz law is our main result.

Hamiltonian Now we are in a position to determine
the Hamiltonian which together with the brackets (4)
yields Eq. (14). Here we present the result, leaving
calculations to SM.

We write the Hamiltonian separating classical and quan-
tum contributions as H =

∫

(H− ~S)ρ0d
2r, restoring

the units and skipping bars in the notations

H =
m∗

2

(

u2 + 2u · u0 − πΓ2ρ log ρ
)

, (16)

S = −πΓ
(

ρ log ρ+
1

96π
(∇ log ρ)2

)

. (17)

The first two terms in the classical part (16) are the
kinetic and centrifugal energies, ∇ × u0 = 2Ω. The
last term in (16) regularizes the divergency of the ki-
netic energy at vortex cores. It was known in the the-
ory of superfluid since 1961 paper of Kemoklidze and
Khalatnikov [20], see, also, recent [21]. This term is the
Casimir invariant, whose Poisson bracket with all local
fields vanish. It does not show in equations of motion
(14) but enters the current ((3) of SM) as a divergence
free term.

The quantum part (17) also consists of two terms. The
first term is a quantum correction to the Kemoklidze-
Khalatnikov term. The second term represents the ef-
fect of the gravitational anomaly.

Static structure factor Now we check that the
Helmholtz equation (2), and its consequences (14-17),
encode independently known long wave expansion of the
static structure factor sk = 1

N 〈0|ρ−kρk|0〉. This check
justifies the hydrodynamic approach.

According to the theory of linear response, the structure
factor appears in the harmonic approximation of the
Hamiltonian as a rigidity of density modes (see SM)

H≈ 1

2N

(

~
2

m∗ℓ2

)

∑

q 6=0

s−1
q ρ−qρq. (18)

We compute the inverse structure factor by expanding
(16,17). The result is

s−1
q =

2

q2
−
(

1

2ν
− 1

)

+ [s−1
q ]

+
, (19)

where [s−1
q ]+ is the part of the expansion which con-

sists of positive powers of q. The leading term in [s−1
q ]

+

followed from the las term in (17) is the effect of the

gravitational anomaly.

[s−1
q ]

+
=

q2

24ν
+O(q4). (20)

Inverting (19) we obtain

sq=
1

2
q2+

1

8ν
(1−2ν)q4+

1

8ν2
(
3

4
−ν)(1

3
−ν)q6+. . . (21)

Each of the three terms in (21) is independently known,
has a universal meaning, and reflects symmetries of the
electronic fluid. The term q2 corresponds to the kinetic
energy 1

2u
2, q4 corresponds to the ρ log ρ term in (16,17)

and referred as the ‘compressibility’ sum rule. Finally,
q6 term represents the gravitational anomaly. It was
first obtained in [22] directly from Laughlin’s wave func-
tion. In equivalent forms, it appeared in [17]. There is
no reasons to think that higher terms, but the first three,
are universal.

Using (21) we obtain the projected structure factor s̄k =
1
N 〈0|ρ̄−kρk|0〉. From (7) we have s̄q = sq − (1− e−

1
2
q2).

Hence,

s̄q = (1− ν)
q4

8ν

(

1 +
1

6ν
(3 − 10ν)q2

)

+ . . . (22)

Harmonic approximation We can now express cor-
rection to the Helmholtz law in terms of the structure
factor. Let us compute [H, ρ̄k] with the Hamiltonian
(18). The first term in the expansion of s−1

q (19) gives
the material derivative, the second does not contribute.
The correction to the Helmholtz law is due to the pos-
itive part of the expansion (19), whose leading term is
the gravitational anomaly (20). We obtain a refine form
of the Eq.(15) valid at all k

Dtρ̄k =
π

ν

∑

q

ekq[s
−1
q ]

+
ρ̄q ρ̄k−q. (23)

Optical absorption by nonlinear waves Absorption oc-
curs when light accelerates particles against the flow,
i.e., due to departure from the Helmholtz law.

Consider an acoustic wave imposed through the Hall
bar as in experiment [2]. It creates a state |k〉 = ρk|0〉.
In solids the optical absorption measures the differential
intensity Sk(ω) =

1
N 〈k|δ(H−~ω)|k〉, and the integrated

intensity s̄k = ~
∫

Sk(ω)dω = 1
N 〈k|k〉, the projected

static structure factor. Another objects of interest is the
oscillation strength, the first moment of the intensity

f̄k=

∫

ωSk(ω)dω=
1

N
〈k|H |k〉= i

2N
〈0| ˙̄ρk ρ̄−k|0〉 (24)

and the the ‘mean energy’ ∆k = f̄k/s̄k = 〈k|H |k〉/〈k|k〉.
In fluids, intensity must be written in a coordinate sys-
tem moving with the fluid. This means that the time
derivative in (24) is the material derivative

f̄k =
1

2N i
〈0|[Dtρ̄k, ρ̄−k]|0〉. (25)
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Hence, only the RHS of (23) enters (25).

Typically Sk(ω) features an asymmetric peak supported
by the curve ~ω = ∆k, rudimentary interpreted as a
spectrum of excitations. Such interpretation will be
valid, would ρ̄k|0〉 be a long-lived state, as it happens
in a compressible fluid. As we commented above, in
FQHE, the state ρ̄k|0〉 is short-lived.

Interpretation aside, we compute f̄k. Eq. (23) reduces
(25) to 〈0|ρ̄−kρ̄qρ̄k−q|0〉, which we compute with the
help of the algebra (4). We express result in terms of

s̃k = (1− ν)−1ek
2/2s̄k and in units ~

2/(πm∗ℓ
2), and use

the structure constants (4) for the torus

∆k = s̃−1
k

∫

sin2(12k × q)e−
q2

2 [s−1
q ]

+
(s̃q − s̃k−q)d

2q (26)

Contrary to (4.15) of [5], our formula does not explic-
itly depend on a model interaction. It is expressed only
through independently measured structure factor. We
emphasize that beyond terms in (22) the structure fac-
tor depends on details of the material, and so as the
‘mean energy’ (26).

Magneto-roton minimum Both f̄k and s̄k and their ra-
tio ∆k feature a broad asymmetric peaks at kℓ ∼ 1.

At k → 0, s̃k ∼ k4

8ν and [s−1
k ]

+
∼ k2

24ν . At k → ∞,

s̃k = 1 and [s−1
k ]

+
= 1

2ν . Hence, the ‘mean-energy’ ∆k

smoothly interpolates between

∆k=0 = 4ν

∫

q2[s−1
q ]

+

(

∇2
q s̃q

)

e−
q2

2 d2q (27)

∆k→∞ =

∫

[s−1
q ]

+
(s̃q + 1)e−

q2

2 d2q. (28)

Numerically evaluation of ∆k from model Hamiltonians
[3–5] also shows a minimum. GMP called it magneto-
roton minimum. However, it is unclear whether it has a
universal meaning. The minimum relies on features of
s̄k beyond its universal part (19-22).

A sequence of minima in optical absorption reported
in [2] for fractions other than Laughlin’s. It is not
clear whether they are related to the GMP minimum
for Laughlin’s states.
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