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Abstract 

The crystal nucleation from liquid in most cases is too rare to be accessed within the limited 

timescales of the conventional molecular dynamics (MD) simulation. Here, we developed a 

“persistent embryo” method to facilitate crystal nucleation in MD simulations by preventing 

small crystal embryos from melting using external spring forces. We applied this method to the 

pure Ni case for a moderate undercooling where no nucleation can be observed in the 

conventional MD simulation, and obtained nucleation rate in good agreement with the 

experimental data. Moreover, the method is applied to simulate an even more sluggish event: the 

nucleation of the B2 phase in a strong glass-forming Cu-Zr alloy. The nucleation rate was found 

to be 8 orders of magnitude smaller than Ni at the same undercooling, which well explains the 

good glass formability of the alloy. Thus, our work opens a new avenue to study solidification 

under realistic experimental conditions via atomistic computer simulation. 
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Homogeneous crystal nucleation from an undercooled liquid is a fundamental process 

that plays an important role in numerous areas ranging from materials science to biophysics [1]. 

In the classical nucleation theory (CNT), the nucleation is described as a competition between 

the energy gain associated with the transformation of the bulk liquid into a crystal phase and the 

energy cost of creating a solid-liquid interface such that the change in the free energy associated 

with the formation of a nucleus containing N atoms can be presented as: 

ሺܰሻܩ∆  ൌ ߤ∆ܰ ൅  (1) ,ߛሻଶ/ଷߩ/ሺܰݏ

where ߩ is the atomic density, ∆ߤ ሺ൏ 0ሻ is the chemical potential difference between the bulk 

solid and liquid, ߛ ሺ൐ 0ሻ is the solid-liquid interfacial free energy and ݏ is a factor to account for 

the nucleus shape. As schematically shown in Fig. 1(a), this competition between the bulk and 

interface terms leads to a critical barrier ∆כܩ where the nucleus reaches the critical size ܰכ. The 

low probability of overcoming this free energy barrier makes it inefficient to sample nucleation 

events in conventional MD simulations [2]. To circumvent this difficulty, advanced sampling 

techniques such as umbrella sampling [3–5] and metadynamics [6] can be used. With the help of 

biased potentials, these techniques can in principle map out the free energy barrier for nucleation. 

However, they do not directly give the correct kinetics of the unbiased system; and thus other 

methods, such as kinetic Monte Carlo (KMC), have to be used to obtain necessary kinetic 

parameters for evaluating the nucleation rate [7], which significantly adds to the complexity of 

the problem. The critical nucleus size was also determined by embedding a large crystal cluster 

into the liquid and watching if the cluster grows or disappears [8]. Although this method can 

provide a fast estimation of the critical nucleus size [9–11], the initial equilibration process 

during which the cluster should melt, can lead to a considerable overestimation of the critical 

nucleus size [12]. Moreover, the artificially chosen initial cluster can lead to an unreal 
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description of the nucleus shape, such as the non-spherical nucleus shape in the Lennard-Jones 

system reviewed recently by Sosso et al. in Ref. [2]. 

 

FIG. 1. Using the persistent-embryo method to reach the critical nucleus. (a) The excess free 
energy (black) and spring constant (red) as a function of the crystalline cluster size .  is the 
number of atoms in the constrained embryo. The red curve shows that the strength of the spring 
constant decreases with the increasing cluster size. The spring is completely removed when the 
cluster size reaches the threshold value .  is the critical size. (b) A cross-section of the as-
grown crystalline cluster around embryo. The yellow atoms with spring icon are the persistent 
embryo. The red are the as-grown atoms, showing the crystalline packing. The gray are the liquid 
atoms. 
 

In the present study, we took advantage of the well-known fact that the dependence of  

on N has a convex shape (see Fig. 1a), which means that a large fraction of  must be 

overcome only to grow a small crystalline cluster (embryo). Thus, if the embryo can be kept 

from re-melting, it can reach the critical size even during a relatively short MD simulation. 

Therefore, we propose a persistent-embryo method to achieve this, in which external spring 

forces are applied to constrain the embryo from melting. First, we create a crystalline embryo 

with  atoms (  is much smaller than , which is then inserted into the liquid while a 

tunable harmonic potential is added to each atom in the embryo to effectively keep it from 
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melting. As the embryo grows, the harmonic potential is gradually weakened and is completely 

removed when the cluster size reaches a sub-critical threshold ௦ܰ௖ ሺ൏  ሻ: the spring constantכܰ

corresponding to the harmonic potential is set as ݇ሺܰሻ ൌ ݇଴ ேೞ೎ିேேೞ೎  if ܰ ൏ ௦ܰ௖  and ݇ሺܰሻ ൌ 0 

otherwise. If the nucleus melts the harmonic potential is gradually enforced. The strategy to 

adjust the spring constant to zero before reaching the critical nucleus size ensures the dynamics 

of the system is unbiased at the critical point, which is an advantage of this approach compared 

to others such as the lattice mold method [13]. A schematic of the simulation configuration is 

shown in Fig. 1(b). We emphasize since the springs are removed well before the nucleus reaches 

the critical size, the overall process simulates homogeneous nucleation. 

During the MD simulation, the NPT ensemble is applied with Nose-Hoover thermostats. 

The time step of the simulation is 1.0 fs. The sample size is set up to 32,000 atoms which is at 

least 10 times larger than the critical nucleus size. The Finnis-Sinclair (FS) potentials [14] were 

used for the investigation of Ni [15] and CuZr  [16] systems. These FS potentials were developed 

to accurately reproduce the melting point data and the liquid structure. The initial liquid is 

equilibrated for 1 ns. The embryo is inserted in the liquid by removing liquid atoms that are 

closer to the embryo atoms than 2.0 Å. All the simulations were performed using the GPU-

accelerated LAMMPS code [17–19]. To quickly identify the solid-like and liquid-like atoms 

during MD simulation, the widely-used bond-orientational order parameter [20,21] is employed 

by calculating ௜ܵ௝ ൌ ∑ ଺௠ሺ݅ሻݍ · כ଺௠ݍ ሺ݅ሻ଺௠ୀି଺  between two neighboring atoms based on the 

Steinhardt parameter ݍ଺௠ሺ݅ሻ ൌ ଵே್ሺ௜ሻ ∑ ௟ܻ௠൫ݎԦ௜௝൯ே್ሺ௜ሻ௝ୀଵ , where ௟ܻ௠൫ݎԦ௜௝൯ is the spherical harmonics 

and ௕ܰሺ݅ሻ is the number of nearest neighbors of atom ݅. Two neighboring atoms i and j are 

considered to be connected when ௜ܵ௝  exceeds a threshold. The threshold is carefully chosen 

based on Espinosa et al.’s “equal mislabeling” method [11], which gives the lowest probability 
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to mislabel the liquid and solid (see Supplemental Material [12] for details). The atoms with 6 

connected neighbors are recognized as solid-like. Then the cluster analysis  [22], which uses the 

crystalline bond length as the cutoff distance to choose neighbor atoms, is applied to measure the 

size of the solid cluster which formed around the initial embryo. 

 

FIG. 2. The persistent-embryo MD simulation of the crystal nucleation in the undercooled liquid 
Ni. (a) The nucleus size versus time of one Ni nucleation trajectory at 1480 K. The blue dashed 
line shows the atom number  in the persistent embryo. The green dashed line indicates the 
threshold to remove the spring and the red solid line indicates the critical size . Two inserts 
zoom in two plateaus at the critical size. (b) The critical size as a function of the temperature. (c) 
The upper panel shows the nucleus size versus time for the isoconfigurational ensemble with 30 
MD runs. Each color indicates an independent MD trajectory. The bottom panel shows the 
ensemble average of . The dashed line indicates the linear fitting to 
the first 5 ps to derive the attachment rate; (d) The nucleation rate as a function of the 
temperature for Ni. The simulation results are connected to guide the eye. The experimental data 
are from Ref.  [23] (▲) and Ref.  [24] (▼).  
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We first applied this method to the pure Ni case with a wide range of moderate 

undercooling. Under these conditions, experimental nucleation events occur on the time scale of 

seconds [23] and, hence, cannot be observed in the conventional MD simulation with the 

simulation time usually less than 1 microsecond. With the help of a persistent embryo, the long-

time fluctuation of the nucleation with nucleus smaller than the embryo is suppressed. The 

barrier to be overcome by the simulation is reduced so that the nucleation can be observed at the 

typical MD timescale. When the nucleus reaches the critical size, it has equal chance to dissolve 

or further grow. Thus, one should expect that the size of the nucleus will fluctuate about ܰכ 

within an extended time, which will result in a plateau at the critical region on the ܰሺݐሻ curve. 

This unique signal can help us to accurately measure ܰכ  in our simulations. We, therefore, 

launched multiple independent MD runs (up to 50 runs) to collect such critical plateaus for 

statistical analysis. An example is shown in Fig. 2(a) (see more examples in Supplemental 

Material [12]). Although the length of the plateaus varies in different runs, their heights are 

almost identical. Thus, the critical size can be determined statistically by averaging over all the 

plateau heights. The obtained critical nucleus size as a function of temperature is shown in Fig. 

2(b). We note that as long as the ଴ܰ and ௦ܰ௖ are chosen such that the fluctuating plateau can be 

observed within the typical MD timescale in the simulations, different choices of the embryo 

shape, ଴ܰ and ௦ܰ௖ give a consistent measurement of the critical nucleus size (see Supplemental 

Material for details [12]). The fundamental reason that the persistent-embryo method allows an 

accurate measurement of the critical nucleus size is that one can observe the actual fluctuations 

of a critical nucleus in an unbiased environment, and perform extensive statistical analysis based 

on these fluctuations. This unique feature will be even more important for treating stoichiometric 

compounds with larger anisotropy of the interfacial properties [25]. 
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 In the CNT, the nucleation rate, ܬ, can be expressed as ܬ ൌ expሺെߢ כܩ∆ ݇஻ܶ⁄ ሻ, where ݇஻ 

is the Boltzmann constant, and ߢ is a kinetic prefactor. ∆כܩ is related to the driving force |∆ߤ| 
and the critical size ܰכ as ∆כܩ ൌ ଵଶ -Using the steady .(see Supplemental Material [12]) כܰ|ߤ∆|

state model to derive the kinetic prefactor [1], we can express the nucleation rate as  

ܬ ൌ ௅݂ାටߩ |∆ఓ|଺గ௞ಳ்ேכ  expሺെ |∆ఓ|ேכଶ௞ಳ் ሻ, (2) 

where ݂ା  is the attachment rate of a single atom to the critical nucleus and ߩ௅  is the 

liquid density. ∆ߤ  can be computed by integrating the Gibbs-Helmholtz equation from the 

undercooling temperature to the melting point [26].  Following the pioneering work by Auer and 

Frenkel [7], once the critical nucleus is available, the attachment rate can be measured with MD 

simulation as the effective diffusion constant for the change in critical nucleus size: ݂ା ൌ
ଶ௧ۄሺ௧ሻ|మכே∆|ۃ . Figure 2(c) shows the measurement of the attachment rate at the critical nucleus using 

an isoconfigurational ensemble [27]. 30 independent MD runs were performed starting from the 

same atomic configuration with a critical nucleus but with atomic momenta randomly assigned 

using the Maxwell distribution. As there are no constraints in the embryos anymore, the critical 

nucleus indeed melted in half of the MD runs and grew in the other half runs, which further 

validates the determination of the critical nucleus size.  

Figure 2(d) shows that the nucleation rate in pure Ni as a function of temperature. The 

nucleation rate computed with the persistent-embryo MD covers a wide undercooling range, 

which can be compared directly to the recent experimental measurements [23,24]. The results 

agree well with Bokeloh et al.’s experimental measurements from 1400 K to 1450 K, in which 

homogeneous nucleation was carefully probed [23]. Our results slightly deviate from Filipponi et 
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al.’s measurements [24] from 1360 K to 1380 K but these data could be affected by possible 

heterogeneous nucleation [24].  

Compared to the pure Ni case, it is a much more challenging task to simulate a nucleation 

in a glass-forming alloy, because the crystal nucleation can be bypassed even on the 

experimental timescale in such a system. Here, we employ the persistent-embryo method to 

simulate the B2 phase nucleation in the Cu50Zr50 alloy, which has attracted extensively attention 

as a strong binary glass former [28,29]. As shown in Fig. 3(a), we can still obtain the critical 

nucleus size by sampling plateaus on  curves collected in different MD runs. It is interesting 

to note that the plateau can sustain much longer time in CuZr than in Ni. This can be attributed to 

a much slower attachment/detachment rate, which was measured in isoconfigurational 

simulations shown in Fig. 3 (b).  

 

FIG. 3. The persistent-embryo MD for B2 nucleation in Cu50Zr50 undercooled liquid at 1097 K. 
(a) Nucleus size as a function of time. The insert shows the B2 critical nucleus. (b) 30 MD runs 
starting from the configuration with critical nucleus are performed. Each color indicates an 
independent MD trajectory. The dashed line shows the linear fitting of the ensemble average to 
derive the attachment rate. 
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The nucleation rate of the B2 phase from the Cu50Zr50 liquid alloy was found to be 8 

orders of magnitude smaller than the nucleation of the FCC phase in liquid Ni. This explains 

why the Cu50Zr50 liquid can bypass the crystal phase and be driven to the glassy state when 

cooled at a sufficient fast rate. In Table.1, we compare several factors that could affect the 

nucleation rates in liquid Ni and Cu50Zr50 alloy at the same undercooling ܶᇱ ൌ ሺ ௠ܶ െ ܶሻ ௠ܶ⁄ . 

The examination of this table shows that 6 orders of magnitude are caused by the higher free 

energy barrier and remaining 2 orders of magnitude result from the smaller attachment rate. The 

higher nucleation barrier of the B2 phase in the Cu50Zr50 alloy is associated with much larger 

energy penalty of forming the liquid/B2 interface comparing to that for the liquid/fcc interface in 

Ni (see Supplemental Material for details [12]). Note the diffusivities of Ni and Cu50Zr50 are 

quite similar. Thus, the attachment rate may be highly affected by the structure of solid-liquid 

interface as observed by Tang and Harrowell  [30].  

 

Table 1 The critical nucleus size (ܰכ), free energy barrier contribution (݁ି∆ீכ/௞ಳ்), attachment 

rate (݂ାሻ, prefactor (ߢ), nucleation rate (ܬ) and atomic diffusivity (ܦ) for the pure Ni and 

Cu50Zr50 liquid alloy at same undercooling ࢀᇱ ൌ ࢓ࢀࢀି࢓ࢀ . 

System T (K) ࢀԢ ࢌ ࢀ࡮࢑/כࡳ∆ିࢋ כࡺା ሺି࢙૚ሻ ࣄ ሺି࢓૜ି࢙૚ሻ ࡶ ሺି࢓૜ି࢙૚ሻ ࡰ ሺ࢓૛/࢙ሻ 

Ni 1430 17% 623 1.0 ൈ 10ିଷଵ 7.6 ൈ 10ଵସ 2.8 ൈ 10ସଵ 2.9 ൈ 10ଵ଴ 2.0 ൈ 10ିଽ 

Cu50Zr50 1097 17% 495 9.8 ൈ 10ିଷ଼ 2.5 ൈ 10ଵଶ 8.3 ൈ 10ଷ଼ 81.3 
Cu: 9.8 ൈ 10ିଵ଴ 

Zr: 7.2 ൈ 10ିଵ଴ 

 

In summary, the proposed persistent-embryo method dramatically extends the ability of 

the MD simulation to explore the rare nucleation without the use of biasing forces near the 

critical point. The spontaneously formed critical nucleus, the critical size and the kinetic 
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prefactor can be measured so that the nucleation rate can be computed in the CNT framework. 

The study of the nucleation in pure Ni demonstrated a good agreement with available 

experimental data proofing the reliability of the preformed work. The investigation of the 

nucleation in the Cu50Zr50 liquid alloy revealed an extremely low nucleation rate which explains 

the high glass formability of this alloy. These successes demonstrate that our work opens a 

practical way to quantitatively estimate nucleation rates under realistic experimental conditions. 

 

Reference 

[1] K. F. Kelton and A. L. Greer, Nucleation in Condensed Matter: Application in Materials 

and Biology (Elsevier, Amsterdam, 2010). 

[2] G. C. Sosso, J. Chen, S. J. Cox, M. Fitzner, P. Pedevilla, A. Zen, and A. Michaelides, 

Chem. Rev. 116, 7078 (2016). 

[3] G. M. G. M. Torrie and J. P. J. P. Valleau, J. Comput. Phys. 23, 187 (1977). 

[4] S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, J. Comput. 

Chem. 13, 1011 (1992). 

[5] S. Auer and D. Frenkel, Nature 409, 1020 (2001). 

[6] A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U. S. A. 99, 12562 (2002). 

[7] S. Auer and D. Frenkel, J. Chem. Phys. 120, 3015 (2004). 

[8] X.-M. Bai and M. Li, J. Chem. Phys. 122, 224510 (2005). 

[9] E. Sanz, C. Vega, J. R. Espinosa, R. Caballero-Bernal, J. L. F. Abascal, and C. Valeriani, J. 

Am. Chem. Soc. 135, 15008 (2013). 

[10] T. Mandal and R. G. Larson, J. Chem. Phys. 146, 134501 (2017). 

[11] J. R. Espinosa, C. Vega, C. Valeriani, and E. Sanz, J. Chem. Phys. 144, 034501 (2016). 



 11

[12] For the Ni potential studied in the present paper, the conventional seeding method 

systematically overestimates the critical nucleus size which leads to an error of ~3 orders 

of magnitudes on the nucleation rate compared to the persistent-embryo method and the 

burte-force MD. See Supplemental Material [url] for the comparison between the seeding 

and current methods, additional critical plateaus  and computational details, which 

includes Refs. [31-33]. 

[13] J. R. Espinosa, P. Sampedro, C. Valeriani, C. Vega, and E. Sanz, Faraday Discuss. 195, 

569 (2016). 

[14] M. W. Finnis and J. E. Sinclair, Philos. Mag. A 50, 45 (1984). 

[15] M. I. Mendelev, M. J. Kramer, S. G. Hao, K. M. Ho, and C. Z. Wang, Philos. Mag. 92, 

4454 (2012). 

[16] M. I. Mendelev, M. J. Kramer, R. T. Ott, D. J. Sordelet, D. Yagodin, and P. Popel, Philos. 

Mag. 89, 967 (2009). 

[17] W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington, Comput. Phys. Commun. 

182, 898 (2011). 

[18] W. M. Brown, A. Kohlmeyer, S. J. Plimpton, and A. N. Tharrington, Comput. Phys. 

Commun. 183, 449 (2012). 

[19] W. M. Brown and M. Yamada, Comput. Phys. Commun. 184, 2785 (2013). 

[20] P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983). 

[21] P. Rein ten Wolde, M. J. Ruiz-Montero, and D. Frenkel, J. Chem. Phys. 104, 9932 (1996). 

[22] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining (Pearson Addison 

Wesley, 2005). 

[23] J. Bokeloh, R. E. Rozas, J. Horbach, and G. Wilde, Phys. Rev. Lett. 107, 145701 (2011). 



 12

[24] A. Filipponi, A. Di Cicco, S. De Panfilis, P. Giammatteo, and F. Iesari, Acta Mater. 124, 

261 (2017). 

[25] S. R. Wilson and M. I. Mendelev, Philos. Mag. 95, 224 (2015). 

[26] M. I. I. Mendelev, M. J. J. Kramer, C. A. A. Becker, and M. Asta, Philos. Mag. 88, 1723 

(2008). 

[27] A. Widmer-Cooper, P. Harrowell, and H. Fynewever, Phys. Rev. Lett. 93, 135701 (2004). 

[28] W. H. Wang, J. J. Lewandowski, and A. L. Greer, J. Mater. Res. 20, 2307 (2005). 

[29] Y. Li, Q. Guo, J. A. Kalb, and C. V. Thompson, Science 322, 1816 (2008). 

[30] C. Tang and P. Harrowell, Nat. Mater. 12, 507 (2013). 

[31] F. C. Frank, Proc. R. Soc. A 215, 43 (1952). 

[32] J. R. Espinosa, C. Vega, C. Valeriani, and E. Sanz, J. Chem. Phys. 142, 194709 (2015). 

[33] G. Chkonia, J. Wölk, R. Strey, J. Wedekind, and D. Reguera, J. Chem. Phys. 130, 64505 

(2009). 

 

Acknowledgements 

We thank M. J. Kramer, R. E. Napolitano, X. Song and R. T. Ott from Ames Laboratory for 

valuable discussion. Work at Ames Laboratory was supported by the US Department of Energy, 

Basic Energy Sciences, Materials Science and Engineering Division, under Contract No. DE-

AC02-07CH11358, including a grant of computer time at the National Energy Research 

Supercomputing Center (NERSC) in Berkeley, CA. K.M.H. acknowledges support from USTC 

Qian-Ren B (1000-Talents Program B) fund. F.Z. acknowledges the support by the Laboratory 

Directed Research and Development program of Ames Laboratory under the Department of 

Energy Contract No. DE-AC02-07CH11358. 


