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We analyze an experimentally realizable model of bosons in a zig-zag optical lattice, showing that
by rapidly modulating the magnetic field one can tune interaction parameters and realize an analog
of the Haldane phase. We explain how quantum gas microscopy can be used to detect this phase’s
non-local string order and its topological edge states. We model the detection process. We also find
that this model can display supersolid correlations, but argue that they only occur at parameter
values which would be challenging to realize in an experiment.

In the past 30 years, one of the dominant themes in
condensed matter theory has been the search for models
where the collective excitations behave unlike any known
fundamental particle. While many such fractionalized
and topologically ordered models have been found [1],
very few of them have been experimentally realized. Here
we show how to build on a setup proposed by the NIST
cold atom experimental group [2] to explore one of the
iconic fractionalized phases, the Haldane phase of a spin-
1 chain [3].

In 1983, Haldane showed that the properties of inte-
ger and half-integer spin chains can be profoundly differ-
ent [3, 4]. Over the following decade, several researchers
explored the rich properties of the integer spin chain,
finding half integer spin edge modes [5–7], and non-local
string order [8–10]. More recently, Dalla Torre, Berg, and
Altman noted that similar physics should occur for spin-
less bosons hopping on a one-dimensional lattice: the
occupation numbers on each site plays the role of the
different spin states [11, 12]. Subsequently, analogs of
the Haldane phase have been predicted for a number of
one-dimensional Bose-Hubbard models with off-site in-
teractions [13–16]. One enlarges the parameter range
over which the Haldane phase is stable if there is a con-
straint on the maximum number of particles per site.
By combining a number of experimental techniques, we
show how to realize a model which would be expected
to support the Haldane phase. We use Density Matrix
Renormalization Group (DMRG) techniques to calculate
the properties of this model [17, 18], and explain how to
detect the exotic signatures of the Haldane phase.

In a system of one-dimensional lattice bosons, the Hal-
dane (HI) phase lies at the intersection of the density
wave (DW) phase, where double occupied sites (dou-
blons) alternate with empty sites (holons), the Mott insu-
lator (MI) phase, where each site is occupied by a single
atom, and the superfluid (SF) phase, where the quasi-
particles (doublons and holons) are free to move around.
In the Haldane phase the quasiparticles are fluid but or-
dered: their spacing varies, but as one moves from left
to right the next quasiparticle after a doublon is a holon,
and vice-versa. This ground state is four-fold degenerate

in a large but finite system with hard-wall boundary con-
ditions – corresponding to the flavors of the leftmost and
rightmost quasiparticles – which are bound to the edges
of the system. This four-fold degeneracy was also found
in the original spin context, corresponding to two spin-
1/2 degrees of freedom, one sitting at each boundary.

One-dimensional bosonic system have been realized by
trapping cold atoms in elongated optical traps [19–21].
Anisimovas et al. showed that by using a one-dimensional
(1D) spin dependent optical lattice and Raman induced
hopping, one could produce the zig-zag lattice illustrated
in Fig. 1(a), described by the tight-binding model [2]

H = t
∑
j

(c†1,jc−1,j + c†1,j−1c−1,j + H.c.)

− t′
∑
j,s

(c†s,j+1cs,j + c†s,jcs,j+1) +
U

2

∑
j,s

ns,j(ns,j − 1)

+ U2

∑
j

[n1,j + n1,j−1]n−1,j . (1)

Here s = ±1 labels the spin state of the atoms and j is the
position of the atom along the lattices. The hopping be-
tween and within these two spin states are characterized
by t and t′. The on-site and nearest interspecies interac-
tion are described by U and U2. Following Anisimovas
et al. and shown in Fig. 1(a), one can think of Eq. (1)
in one of two ways: either as a two-leg “zig-zag” lattice,
or a 1D chain with next-nearest neighbor hopping. The
latter is closer to the actual physical system. Following
that interpretation, we introduce operators b2j = c−1,j

and b2j+1 = c+1,j , in which case t, t′ are nearest and
next-nearest neighbor hopping parameters, while U,U2

are on-site and nearest neighbor interaction parameters,
i.e. H = t

∑
i(b
†
i+1bi + b†i bi+1)− t′

∑
i(b
†
i+2bi + b†i bi+2) +

U
2

∑
i ni(ni − 1) + U2

∑
i ni+1ni. Aside from the longer

range hopping, Eq. (1) maps onto the model introduced
by Dalla Torre et al. in considering polar molecules in op-
tical lattices. Unfortunately, based on their analysis, one
expects that the Haldane phase is not stable when U/U2

is large – which is the physically relevant regime con-
sidered in [2]. (Our numerics confirm this expectation.)
Here we argue that by using a Feshbach resonance [22],
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FIG. 1. (Color Online) (a) Schematic of the experimental
system, which can be interpreted as a zig-zag ladder or a 1D
lattice with next-nearest neighbor hopping. The green and
orange colors label two different spin states s = ±1. (b) On-
site interaction U in F = 1, mF = 0 (green dashed) and mF =
1 (solid orange) hyperfine states of 87Rb. The background
interaction strength U0 corresponds to the value of U away
from the Feshbach resonances near the zero-crossings at B1

and B2. Rapidly switching the magnetic field between B1

and B2, as illustrated in (c), yields an effective time-averaged
on-site interaction Ueff = U0/2 in both channels.

one can reduce U , driving the system into the Haldane
phase. The lossy nature of bosonic Feshbach resonances
aids us, as the quantum Zeno effect converts the result-
ing large 3-body recombination rate into a suppression of
the probability of having more than two particles on any
given site – further stabilizing the Haldane phase.

More concretely, we consider the F = 1, mF = 1, 0
states of 87Rb. The coefficient U is proportional to the
scattering length associated with two atoms in the same
magnetic sublevel. As illustrated in Fig. 1(b), this scat-
tering length can be manipulated by applying a magnetic
field. Near B1 ∼ 661.43G there is a zero-crossing where
the interactions between two mF = 0 atoms vanish, while
near B2 ∼ 685.43G there is a similar zero crossing for
mF = 1 [23]. We envision rapidly switching the magnetic
field between these two fields, as illustrated in Fig. 1(c).
As long as the switching time is short compared to the
other scales in the problem (h/U, h/t ∼ h/ER ≈ 0.27ms
for laser wavelength λ = 789nm) the effective interac-
tion in each spin channel will be given by time-averaging
the instantaneous Hamiltonian Ueff =

∫ t
0
U(τ)dτ [24–26].

Even though at any given time the interactions in the
two channels will be different, this time averaged inter-
action is the same for each spin species, and U will be
the same on all sites. This technique effectively halves
the strength of the on-site interaction as in Fig. 1(b).
The coefficient U2 is largely unaffected. We find that one
can achieve a ratio of on-site to nearest neighbor inter-
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FIG. 2. (Color Online) Representative slice of the phase di-
agram of the model in Eq. (1). Here U2/t = 2.5, and the
maximum occupation of any site is 2. Dots show our best esti-
mate of phase boundaries, as determined by bipartite number
fluctuations, and lines represent error bars [27]. Yellow, Red,
Blue, and Green show amplitude of the correlation functions
in Eq. (2) at a separation of s = 80 sites in a chain of length
256. At shorter lengthscales, correlations are of similar size,
but the boundaries are less sharp.

action of U/U2 ≈ 1.6, for a lattice depth of V0 = 2ER
(for the effect of a higher band, see the Supplemental
Material [27]). By appropriately tuning the transverse
confinement, one can take U2/t = 2.5, yielding U/t = 4.
Figure 2 shows the phase diagram for this model, reveal-
ing that these parameters place the system within the
Haldane phase regime.

The zero crossings are very close to Feshbach reso-
nances, and hence induce a large 3-body loss rate K3. In
the present circumstance this is advantageous. Follow-
ing the logic in [31], when K3 is large, there is a strong
suppression of the process in which a third particle hops
onto a site containing two other particles. This suppres-
sion can be modeled by a complex on-site three-body
repulsion of strength U3b ∼ −ihK3n

2/12. We estimate
that one can get |U3b| ∼ 10ER for a typical on-site parti-
cle density n ∼ 2.1× 1015cm−3 and typical on-resonance
three-body rate K3 ∼ 10−25cm6/s. Since |U3b| is larger
than the other scales in the problem, it can be replaced
by a constraint that no more than two particles can oc-
cupy any site.

With this constraint we use the DMRG to calculate
the properties of the model in Eq. (1). We start with a
infinite DMRG algorithm to grow the system to desired
size, and then do finite DMRG sweeps until we reach
convergent. This technique is typically understood as
systematically optimizing a variational wavefunction in
the form of a matrix product state [18]. The degree of
approximation is controlled by the bond dimension d.
We have considered systems as large as L = 512 sites,
and bond dimensions as large as d = 500. The algorithm
is more efficient if we alter the boundary conditions to
break the potential four-fold degeneracy of the Haldane-
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HI
0 1 2 0 2 0 2 1 1 0 2 0 2 0 2 1 0 1 1 1
1 1 0 1 1 2 0 1 2 0 1 2 1 0 1 1 1 1 2 1

SF
0 1 1 1 0 2 1 2 0 2 0 1 1 1 0 1 1 2 1 1
0 0 2 1 1 1 1 0 2 2 0 1 1 0 1 0 2 1 1 1

DW
0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2
0 2 0 2 0 2 0 2 0 2 1 1 0 2 0 2 0 2 0 1

MI
1 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 2 1 0 1 1 1 2 0 1 1 1 1 1

SS
2 0 2 0 1 1 0 3 0 2 0 1 1 2 0 3 0 0 2 0
1 0 2 0 2 0 2 0 2 0 1 0 1 0 3 0 0 2 0 2

FIG. 3. Typical configurations of occupation numbers ex-
tracted from the central 20 sites of our DMRG wavefunc-
tions, modeling single-shot quantum gas microscope images.
Configurations correspond to parameters in which different
forms of order can be observed: HI(U/t = 4, U2/t = 2.5 for
t′/t = 0), SF(U/t = 4, U2/t = 2.5 for t′/t = 1), DW(U/t = 1,
U2/t = 2.5 for t′/t = 0), MI(U/t = 10, U2/t = 2.5 for
t′/t = 0). The last figure has short-range supersolid corre-
lations: SS(U/t = 0, U2/t = 2.5 for t′/t = 0.6 for maximum
occupation number 3). Each circle resembles a single site, and
the number in the circle tells how many atoms are on this site.
We show two independent realizations for each phase.

phase groundstate, and the potential two-fold degeneracy
of the density wave groundstate. In particular we used
boundary conditions which pin a vacancy at the left-most
site, and doublon at the right-most site. We analyze
convergence with bond dimension and system size in the
supplementary information. From these studies we ex-
pect that experiments on systems of size L ∼ 60 will see
significant finite-size effects near the phase boundaries,
but the bulk physics is unchanged, and such experiments
will be able to unambiguously observe all of the relevant
physical phenomena.

The order in the Haldane, Mott insulator, density wave
phases are encoded in string (str), parity (MI) and den-
sity wave (DW) correlation functions [8, 12]

Cstr
ij =

〈
δnie

iπ
∑

i<k<j δnkδnj

〉
,

CMI
ij =

〈
eiπ

∑
i≤k≤j δnk

〉
,

CDW
ij = (−1)j−i 〈δniδnj〉 , (2)

where δnk = nk−1. The phase factor eiπ
∑

i<k<j δnk = ±1
depends on if the number of quasiparticles between sites
i and j is even or odd. In the superfluid phase all of
the three correlation functions fall to zero as i and j are
separated. In the Haldane/Mott insulator phase, only
Cstr/CMI has long-range order, while in the density wave
phase all the three correlation functions are nonzero.

We additionally study the single particle density ma-
trix CSF

ij = 〈b†i bj〉 and the bipartite number fluctuations,

Dj = 〈N2
i<j〉 − 〈Ni<j〉2, where Ni<j =

∑j−1
i=1 ni is the

number of particles to the left of site j. The superfluid
phase is characterized by power-law behavior of the den-
sity matrix, and enhance bipartite number fluctuations
when compared to the incompressible insulating phases.
We found that these number fluctuations were the most
reliable way to extract the phase boundaries between the
superfluid and insulating phases [27]. In particular, due
to the different scaling with system size, the number fluc-
tuations in half the chain, DL/2, form plateaus in each
of the phases, and the phase boundaries correspond to
peaks in the slope dDL/2/dt

′. We use the full width half
max of these peaks as an estimate of the accuracy of these
boundaries. This approach is adapted from [32], and is
similar to finding phase boundaries from peaks in specific
heat.

Additionally, the DW to HI transition can be accu-
rately determined from the properties of CDW. Apply-
ing finite size scaling [33] to the asymptotic behavior of
this correlation function yields a DW-HI boundary which
agrees with our calculation using the number fluctua-
tions. The various superfluid-insulator transitions are
not amenable to this standard finite size scaling analysis:
they have behavior related to Kosterlitz-Thouless tran-
sitions, and are harder to determine. In addition to our
technique of looking at number fluctuations, these transi-
tions can be identified by looking at the excitations spec-
trum [13] or superfluid stiffness [34], by taking moments
of CSF [35, 36], or by comparing the power law decay of
CSF to a Luttinger liquid model [37, 38]. More discus-
sion of the critical behavior can be found in [39]. Due
to the significant finite size effects, it is unlikely that an
experiment would be able to accurately determine these
phase boundaries.

The correlation functions in Eq. (2) are directly mea-
surable via a quantum gas microscope [40–44]. One
projects the quantum state into one in which there is
a definite number of particles on each site – giving a
single realization of {ni}. Repeating the measurement
many times allows one to extract the expectation val-
ues in Eq. (2). This technique has already been used to
measure the parity order [44].

In addition to showing the phase boundaries, Fig. 2
shows the size of correlations on a length-scale of 80 sites.
In a significant part of the phase diagram, the string cor-
relations are large but all other correlation functions van-
ish. This corresponds to the desired Haldane phase. The
HI, DW , and MI correlations at shorter lengths scales
are of similar strength, but display less sharp boundaries.
As would be expected, the SF correlations are strongly
length-dependent. They are also extremely hard to mea-
sure in an experiment. The simplest experimental knob
for moving through this phase diagram is the strength
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of the Raman beams, which changes t while leaving all
other scales unchanged. Additionally, both t and t′ are
exponentially sensitive to the lattice depth, while the ra-
tio between U and U2 is controlled by modifying the time
dependence of the magnetic field.

In addition to exploring the expectation values of the
various correlation functions, we use a novel Monte-Carlo
sampling algorithm to stochastically generate ‘typical’
cold-gas microscope images [27]. Given the DMRG wave-
function |ψ〉, we first calculate the probability that site-1
had 0, 1 or 2 particles on it. We use these probabilities
to choose one of these sectors, and project the wavefunc-
tion into that sector. This calculation is then repeated
on site-2, using the new wavefunction... Figure 3 shows
configurations generated by this algorithm, which should
be representative of what is seen in an experiment. We
emphasize that these are not cartoons, but rather are
unbiased samples. As expected, in the HI phase the dou-
blons and holons alternate, with a variable number of
singly-occupied sites between them. This can be con-
trasted with the SF phase, where there is no ordering of
the doublons and holons. In the DW phase, doublons
and holons alternate. In these images one sees a small
number of defects in the order – as should be expected.
In the MI phase the images show very few holons and
doublons – and those which exist are tightly bound to-
gether. In this figure we also show images with supersolid
(SS) correlations that can appear when we relax the con-
straint forbidding double occupancy. The physics of this
regime will be discussed below.

To illustrate the role of the three-body constraint, we
repeated our calculations, allowing the on-site particle
number to be as large as 3. Figure 4 shows the analog of
Fig. 2. All correlations, except those corresponding to
SF order, are much weaker. Short and medium range HI,
MI, and DW correlations are detectable, but our scaling
analysis suggest that for these parameters there is no
long-range DW or HI order.

For small on-site interaction U and finite next nearest
hopping t′, we find a superfluid region with short-range
density wave order, which is suggestive of proximity to
a supersolid phase (SS). Such a phase would be more
familiar in the language of the “zig-zag” ladder picture:
The atoms form a superfluid which preferentially sits on
one leg of the ladder. An alternative cartoon can be
constructed from the DW state “2020202020.” Because
of the next-nearest neighbor hopping, one can produce a
triplon-singlon pair “2020103020,” and these defects may
be mobile. Forbidding triple occupancy eliminates these
excitations, and prevents the occurrence of this phase
in the constrained model. In addition to such triplons
and singlons, the configurations in Fig. 3 display defects
where atoms have hopped from even to odd sublattices.
These defects are responsible for the short-range nature
of the correlations.

To summarize, we have proposed a way to realize the
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FIG. 4. (Color Online) Representative slice of phase diagram
when maximum occupation of any site is 3. All parameters
and symbols same as Fig. 2. Note change of scale on color
bars. For these parameters there are regions with short or
intermediate-range density wave (yellow) or Haldane order
(red), but no long-range order.

Haldane phase in a gas of 87Rb atoms trapped in a zigzag
optical lattice, where a different atomic spin state is
trapped on each leg of the ladder. One reduces the on-
site interactions (relative to the nearest neighbor inter-
actions) by rapidly sweeping the magnetic field between
two zero-crossings associated with Feshbach resonances
in each of the spin states. The proximity to the Feshbach
resonances introduces large three-body loss, which via
the quantum Zeno effect prevents triple-occupation. We
calculate the phase diagram of this model, and find that
the Haldane phase is experimentally realizable. We mod-
eled a quantum-gas microscope experiment, and found
that one can readily identify the string order of the Hal-
dane phase in individual images. More quantitative tests
require averaging over several images. Such averaging
has been used to identify other non-local order parame-
ters [44]. We further show that without the constraint on
particle number, this model shows hints of a supersolid
phase (cf. [45, 46]). One would need to use other tech-
niques, however, to experimentally reach this supersolid
regime. Seeing the string order in the Haldane phase
would be a remarkable triumph in engineering quantum
matter.
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