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Immiscible fluid-fluid displacement in partial wetting continues to challenge our microscopic and macro-5

scopic descriptions. Here, we study the displacement of a viscous fluid by a less viscous fluid in a circular
capillary tube in the partial wetting regime. In contrast with the classic results for complete wetting, we show
that the presence of a moving contact line induces a wetting transition at a critical capillary number that is con-
tact angle dependent. At small displacement rates, the fluid-fluid interface deforms slightly from its equilibrium
state and moves downstream at a constant velocity, without changing its shape. As the displacement rate in-10

creases, however, a wetting transition occurs: the interface becomes unstable and forms a finger that advances
along the axis of the tube, leaving the contact line behind, separated from the meniscus by a macroscopic film
of the viscous fluid on the tube wall. We describe the dewetting of the entrained film, and show that it univer-
sally leads to bubble pinch-off, therefore demonstrating that the hydrodynamics of contact line motion generate
bubbles in microfluidic devices, even in the absence of geometric constraints.15

The displacement of one fluid by another immiscible fluid
in small, confined geometries is an important process in many
natural and industrial settings, including water infiltration into
soil [1], enhanced oil recovery [2], ink-jet printing [3], and mi-
crofluidics [4]. A particularly challenging aspect of describing20

fluid-fluid displacement in the presence of a solid is the move-
ment of the contact line between the two fluid phases and the
solid surface (i.e., the three-phase contact line), which violates
the no-slip boundary condition commonly assumed in classi-
cal fluid mechanics [5–10]. Recent experiments in quasi-2D25

geometries [11, 12] have demonstrated that the presence of
moving contact lines lead to a wealth of pattern formation
regimes. Due to the planar nature of these experiments, how-
ever, the contact line could not be directly visualized.

A capillary tube provides an ideal experimental system30

for studying fluid-fluid displacement, as it allows for unob-
structed visualization of the contact line dynamics. While the
displacement of a less viscous fluid by a more viscous one has
been extensively studied in the context of capillary rise [13–
16] and forced imbibition [17–19], experiments on the dis-35

placement of a more viscous fluid by a less viscous one have
been relatively scarce. In his seminal work, G. I. Taylor found
that as the air invades into a capillary tube initially filled with a
perfectly wetting, viscous fluid, it leaves a film of the defend-
ing fluid coating the tube walls in its wake, whose thickness is40

controlled by the finger velocity [20].
Here, we revisit the Taylor–Bretherton problem in the par-

tial wetting regime by studying the invasion of air into a cap-
illary tube filled by a viscous fluid, and show that contact line
motion leads to novel flow behaviors. At low displacement45

rates, the fluid-fluid interface moves downstream at a con-
stant velocity, without changing its shape. As the flow rate
increases beyond a critical value, however, a forced wetting
transition occurs and a liquid film is deposited on the tube
wall. The deposited film is unstable and dewets from the wall,50

leading to the formation of a growing dewetting rim that ulti-
mately causes bubble pinch-off.

We conduct fluid-fluid displacement experiments in
precision-made borosilicate glass capillary tubes with inner

diameter d = 750 µm. The capillary tube is open to the at-55

mosphere on one end and connected to a syringe pump on
the other. We fill the capillary tube with glycerol and then
withdraw the glycerol so that air displaces glycerol at atmo-
spheric pressure. Glycerol is partially wetting to the capillary
tubes, and has a static receding contact angle θeq = 25 ± 5◦.60

To alter the wettability of the capillary tubes, we apply heat-
assisted chemical vapor deposition (CVD) of trichlorosilane
in a vacuum oven. Glycerol is less wetting to the silane-
coated capillary tubes, and it has a static receding contact an-
gle θeq = 68 ± 5◦. We use each capillary tube only once to65

ensure precise control over its wettability [21].
Figure 1 shows an experimental phase diagram of the fluid-

fluid interface profiles obtained under the two distinct wetta-
bility conditions and a wide range of capillary numbers (Ca).
We define Ca = µU/γ, where µ = 1400 mPa · s is the70

viscosity of glycerol at 20◦C, U = 4Q/(πd2) is the dis-
placement velocity, with Q being the imposed flow rate, and
γ = 65 ± 2 mN/m is the glycerol-air interfacial tension. The
left column shows the results corresponding to the more wet-
ting case (θeq = 25◦). At low Ca numbers, the fluid-fluid75

interface deforms slightly from its equilibrium state and trav-
els downstream at a constant velocity, without changing its
shape (Fig. 1a-d). Deformation of the fluid-fluid interface cor-
responds to a decrease in the apparent contact angle, which
reaches zero at a critical capillary number Ca∗. This value of80

Ca∗ marks the onset of the wetting transition, beyond which
the defending liquid is forced to wet the tube walls as a thin
film and the air advances as a finger through the center of the
tube (Fig. 1e-j). We find that the onset of the wetting transi-
tion is strongly dependent on the wettability of the capillary85

tube: Ca∗ is over an order of magnitude larger in the less wet-
ting tube (Fig. 1, right column) compared to that in the more
wetting tube (Fig. 1r vs. Fig. 1e).

The flow dynamics before the wetting transition (Ca<Ca∗)
is governed by the two-way coupling between the fluid-fluid90

interface shape and the flow field within each fluid phase, as
described by the Stokes equations. The Laplace pressure jump
across the fluid-fluid interface is balanced by a normal viscous
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FIG. 1. Fluid-fluid interface of air (black) displacing glycerol (white) under increasing capillary numbers (top to bottom) in a wetting capillary
tube with θeq = 25± 5◦ (left column) and a weakly wetting capillary tube with θeq = 68± 5◦ (right column). The orange arrows indicate the
direction of interface displacement. At small Ca, the meniscus deforms slightly from its equilibrium shape, but remains as a spherical cap. At
large Ca, however, a wetting transition occurs and the invading air forms a single finger that advances along the center of the tube, leaving a
macroscopic trailing film of the viscous liquid on the tube walls. The critical capillary number Ca∗ at which film formation occurs is controlled
by the wettability (pane r vs. pane e).

stress discontinuity. In the framework of the generalized lu-
brication approximation [22, 23], we can use the local approx-95

imation of the Stokes flow in a wedge, for which exact ana-
lytical solutions exist [5], and greatly reduce the complexity
of this problem to an equation for the shape of the interface in
the frame co-moving with the fluid-fluid interface [11]. While
this approximation is strictly valid for flow in a 2D setting,100

our results show that it provides good estimates for flow in an
axisymmetric tube as well [21]. In this framework, we arrive
at the following differential equation describing the interface
shape:

d2θ

ds2
=

3Caf(θ,R)

h(h+ 3λs)
, (1)105

where θ is the local interface slope, s is the arc length along
the interface, R = µg/µl is the viscosity ratio between the
gas and liquid, and λs = O(nm) is the slip length that re-
moves the moving contact line singularity [5]. In the limit of
zero viscosity ratio (i.e. neglecting the air viscosity), we have110

f(θ, 0) = −(2/3)(sin θ)3/(θ − sin θ cos θ). We can then de-
scribe the fluid-fluid interface shape deformation for an arbi-
trary displacement rate by solving Eq. (1) using the boundary

conditions θ|s=0 = θeq , h|s=0 = 0 at the contact line, and
θ|s=l = π/2, h|s=l = d/2 at the tube center, where l is the115

half-arc length of the interface. We find excellent agreement
between the experimental data and the theoretical predictions
for the fluid-fluid interface shape before the wetting transi-
tion (Fig. 2). The deformation of the interface from equilib-
rium is accompanied by a decrease in the apparent contact120

angle θapp. At the point of wetting transition, θapp → 0, and
the liquid becomes effectively wetting to the walls, leaving an
entrained liquid film (Fig. 2b). A similar behavior is also ob-
served in the forced wetting transition dynamics of receding
contact lines in unconfined systems when a fiber or plate is125

withdrawn from a liquid bath. When the liquid is perfectly
wetting to the substrate, it immediately leaves a film behind,
known as the Landau–Levich film [24–26]. When the liquid
is only partially wetting, however, a critical plate velocity is
needed for the liquid to coat the substrate [9, 27–29]. In the re-130

verse process of forced wetting transition in advancing contact
lines, air is entrained, but at much higher contact line veloci-
ties [30–37].

Below the wetting transition, the contact line moves with
the same velocity as the interface tip. Above the critical point135
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FIG. 2. (a) Fluid-fluid interface profiles for Ca<Ca∗ in the less wet-
ting capillary tube (θeq = 68◦). As Ca increases, the fluid-fluid
interface deforms further from its equilibrium shape. The symbols
and dashed lines correspond to the experimental and numerical re-
sults for Ca = 0.003, 0.006, 0.012, respectively. (b) Deformation
of the fluid-fluid interface can be quantified by the apparent contact
angle θapp, which decreases asymptotically towards zero as the Ca
approaches the critical capillary number Ca∗. This marks the onset
of the wetting transition. The diamond and circle symbols represent
the experimental data and theoretical predictions, respectively. The
dashed lines above and below the data points represent the experi-
mental uncertainty.

(Ca>Ca∗), however, the interface becomes unstable and a fin-
ger is formed. In this regime, the contact line travels at a con-
stant, but smaller, velocity compared to that of the finger tip,
which gives rise to a macroscopic film of the viscous defend-
ing fluid in the wake of the the finger. It is remarkable that, for140

Ca>Ca∗, the contact line speed becomes independent of Ca
(Fig. 3). This indicates that the dynamics downstream (near
the finger tip) and upstream (close to the contact line) become
effectively decoupled. We further observe that the contact line
speed beyond the wetting transition is strongly dependent on145

the wettability—the contact line speed is more than an order
of magnitude higher in the less wetting tube compared to that
in the more wetting tube. These observations lead us to hy-
pothesize that the dynamics of the entrained film next to the
contact line can be analyzed independently of the finger tip150

dynamics.

The contact line behind the entrained film recedes from the

10−5 10−4 10−110−3 10−2
10−5

10−4

10−1

10−3

10−2

Ca

Cacl

experiment,
experiment,
simulation results

θeq = 68◦
θeq = 25◦

FIG. 3. The contact line capillary number Cacl = µUcl/γ as a func-
tion of the macroscopic capillary number Ca = µU/γ, where Ucl

and U are the contact line velocity and the displacement velocity,
respectively. The green and blue circles represent the experimental
measurements in the more wetting tube (θeq = 25◦) and in the less
wetting tube (θeq = 68◦), respectively. The triangles show the cor-
responding theoretical predictions of Eq. (2). The vertical dashed
lines represent the critical capillary numbers Ca∗ as predicted by
Eq. (1). For Ca < Ca∗, the fluid-fluid interface deforms slightly
while remaining a spherical cap, and the contact line and the inter-
face tip travel at the imposed displacement velocity U = 4Q/πd2

(gray dashed line). For Ca > Ca∗, the air forms a finger that ad-
vances along the center of the tube, leaving behind a film of the
more-viscous defending liquid. The incomplete displacement of the
defending liquid results in an interface tip velocity that is faster than
the imposed displacement velocity. The contact line that trails behind
travels at a velocity that, remarkably, is independent of the imposed
flow rate. Instead, the contact line velocity is controlled by the wet-
tability of the capillary tube.

tube wall at a constant rate, leading to the formation of a
dewetting rim (see, e.g., Fig. 1r). While the dynamics of hole
formation and the associated dewetting rims has been exten-155

sively studied in the context of thin film on flat substrates [38–
40], much less is known about the influence of confinement on
the dewetting dynamics. In particular, as we show below, an
important distinguishing factor in dewetting in confined ge-
ometries is that it leads to a pinch-off instability in finite time.160

Using the long-wave approximation, we derive a model that
describes the dynamics of the dewetting rim in an axisymmet-
ric capillary tube [21]:

∂h̃

∂t̃
=

1

(1− h̃)

∂

∂z̃

(
M(h̃)

∂

∂z̃

[
Π(h̃)− κ̃

])
, (2)

where h̃ is the film height measured from the tube wall,165

M(h̃) = 1 − 4(1 − h̃)2 + 3(1 − h̃)4 − 4(1 − h̃)4 ln (1− h̃)
is the mobility, Π(h̃) = 6(1− cos θeq)(δ2/h̃3)(1− δ/h̃) is the
disjoining pressure with δ as the precursor film thickness, and
κ̃ = 1/(1− h̃) + h̃z̃z̃ is the curvature. Here, all length scales
are non-dimensionalized by the tube radius r, and the dimen-170

sionless time is defined as t̃ = (γ/µ)t/(8d). In the absence of
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FIG. 4. (a) Top: Experimental images of the fluid-fluid interface profile just before and after pinch-off. Bottom: The dewetting rim profile in
the frame co-moving with the receding contact line for Ca = 0.096 and θeq = 68o. The dashed and solid lines correspond to the numerical
and experimental data, respectively. (b) The maximum height of the rim h̃max grows linearly at early times and nonlinearly accelerates close to
the pinch-off time τ . The color-coded circles represent different experimental realizations of rim growth that led to pinch-off, while the dashed
line represents the theoretical prediction of Eq. (2). The inset shows the pinch-off time as a function of the capillary number and the wettability
condition, where the green and blue symbols correspond to θeq = 25◦ and 68◦, respectively. The theoretical predictions (diamonds) matches
closely to the experimental data (circles) for θeq = 68◦. Given the limited experimental window, we did not directly observe pinch-off in the
more wetting tube since its τ is predicted to be over an order of magnitude larger than that in the less wetting tube. (c) The bubble length
Lb as a function of the capillary number and the wettability condition, where the green and blue symbols correspond to θeq = 25◦ and 68◦,
respectively. The theoretical predictions (diamonds) agree well with the experimental data (circles) for θeq = 68◦. See video [21].

the disjoining pressure, this model has similarities to the class
of models describing the evolution of films coating cylindri-
cal fibers or interior of tubes [25, 41, 42], and in the thin-film
limit simplifies to the models describing the Rayleigh–Plateau175

instability of thin liquid films in cylindrical tubes [43, 44]. It
is interesting to note that, in this limit, the model is equivalent
to one describing the Rayleigh–Taylor instability of a thin film
on the underside of a horizontal plate, where gravity plays the
destabilizing role of the azimuthal curvature in the tube [45].180

The thickness of the entrained liquid film depends on the
finger tip velocity and has been determined using a matched-
asymptotic analysis by Bretherton [20], who found that hf ∼
Ca2/3f as Ca → 0, with Caf = µUf/γ representing the finger
capillary number. This scaling was later empirically extended185

to higher capillary numbers: hf/r = 1.34Ca2/3f /(1 + 1.34 ×
2.5Ca2/3f ) [46, 47]. This relationship, in combination with
conservation of mass Q = π(r − hf)

2Uf, determine both the
entrained film thickness and the finger velocity. We use this
thickness as the downstream boundary condition for Eq. (2).190

The growth of the dewetting rim is well-captured by our
theoretical predictions (Fig. 4a). At early times, the growth
of the dewetting rim is linear in time due to the constant-
speed retraction of the contact line (Fig. 3). At late times,
however, this mechanism is overtaken by the surface tension195

driven Rayleigh–Plateau instability caused by the azimuthal
curvature, leading to an accelerated growth and bubble pinch-
off (Fig. 4b). The continual movement of the contact line re-
peats the process of ridge growth and pinch-off, leading to the
formation of a train of mono-dispersed bubbles.200

The pinch-off time depends on both the capillary number
and the wettability of the capillary tube (Fig. 4b, inset). For a
given wettability, higher Ca leads to faster pinch-off due to the
thicker film deposited on the tube wall (hf ∼ Ca2/3f ). For a
given Ca, higher θeq leads to faster pinch-off due to the higher205

contact line velocity (Fig. 3) as the contact line velocity of the
dewetting rim scales as θ3eq [39, 40]. The large difference in
contact line velocity, in turn, leads to a pinch-off time that is
over an order of magnitude larger in the more wetting tube
(θeq = 25◦) compared to that in the less wetting tube (θeq =210

68◦).
The dependence of the pinch-off time on the wettability

leads to a dependence of the generated bubble length Lb on
the contact angle: for a given flow rate, a higher contact an-
gle leads to faster pinch-off and therefore a smaller bubble215

(Fig. 4c). The impact of the flow rate on the bubble size is less
straightforward. Higher Ca leads to a faster travelling finger,
which increases the length of the bubble, but also to a thicker
entrained film, which reduces the pinch-off time. The compe-
tition between these two effects lead to a weak dependence of220

the bubble length on the flow rate, leaving the wettability as
the dominant factor controlling the bubble size.

Pinch-off induced bubble formation has a wide range of ap-
plications in microfluidic devices [4, 48]. Most existing mi-
crofluidic bubble generators rely on flow channels with ge-225

ometric constrictions [49–52] or an external cross-flow [53–
56] to initiate bubble pinch-off [57–59]. Recently, it has been
shown that “superconfinement” can trigger a jet instability
from a moving interface in the absence of geometric features,
but through a mechanism that relies on thermal fluctuations230

in systems with ultralow surface tension [36]. Our experi-
ments demonstrate that pinch-off will occur in smooth, uni-
form capillaries as a result of wettability-mediated contact line
motion. We have shown that wettability and flow rate control
the pinch-off time, and therefore can be used to tune the size235

of mono-dispersed bubbles.
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