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We report on the experimental realization of a conservative optical lattice for cold atoms with
sub-wavelength spatial structure. The potential is based on the nonlinear optical response of three-
level atoms in laser-dressed dark states, which is not constrained by the diffraction limit of the light
generating the potential. The lattice consists of a 1D array of ultra-narrow barriers with widths
less than 10 nm, well below the wavelength of the lattice light, physically realizing a Kronig-Penney
potential. We study the band structure and dissipation of this lattice, and find good agreement
with theoretical predictions. The observed lifetimes of atoms trapped in the lattice are as long
as 60 ms, nearly 105 times the excited state lifetime, and could be further improved with more
laser intensity. The potential is readily generalizable to higher dimension and different geometries,
allowing, for example, nearly perfect box traps, narrow tunnel junctions for atomtronics applications,
and dynamically generated lattices with sub-wavelength spacings.

PACS numbers: 37.10.Jk, 32.80.Qk, 37.10.Vz

Coherent control of position and motion of atoms with
light has been a primary enabling technology in the
physics of ultracold atoms. The paradigmatic examples
of conservative optical potentials are the optical dipole
trap and optical lattices, generated by far off-resonant
laser fields, with the ac-Stark shift of atomic levels as the
underlying mechanism. The spatial resolution for such
optical potential landscapes is determined by the diffrac-
tion limit, which is of order the wavelength of the light λ.
This fundamentally limits optical manipulation of atoms.
For example, in quantum simulation with atoms in op-
tical lattices, the minimum lattice constant is λ/2, set-
ting the energy scale for Hubbard models for both hop-
ping (kinetic energy) and interaction of atoms, with chal-
lenging temperature requirements to observe quantum
phases of interest [1]. Developing tools to overcome the
diffraction limit, allowing coherent optical manipulation
of atoms on the sub-wavelength scale, is thus an out-
standing challenge. Following recent proposals [2–4] we
report below first experiments demonstrating coherent
optical potentials with sub-wavelength spatial structure
by realizing a Kronig-Penney type optical lattice with
barrier widths below λ/50.

In the quest to beat the diffraction limit, several ideas
have been proposed to create coherent optical potentials
with sub-wavelength structure. These include Fourier-
synthesis of lattices using multiphoton Raman transi-
tions [5, 6], optical or radio-frequency dressing of optical
potentials [7, 8], and trapping in near-field guided modes
with nano-photonic systems [9, 10] (although they suf-
fer from decoherence induced by nearby surfaces). An

alternative approach uses the spatial dependence of the
nonlinear atomic response associated with the dark state
of a three-level system [11–16], as a means to realize sub-
wavelength atomic addressing and excitation. The sub-
wavelength resolution arises when optical fields are ar-
ranged so that the internal dark state composition varies
rapidly (“twists”) over a short length scale.

As proposed in [3, 4], such a sub-wavelength twist can
also be used to create a conservative potential with nar-
row spatial extent, due to the energy cost of the kinetic
energy term of the Hamiltonian [2, 17, 18]. Unlike ac-
Stark shift potentials, this twist-induced potential is a
quantum effect, with magnitude proportional to ~. Using
this effect, we create 1D lattices with barrier widths less
than λ/50. This potential realizes the Kronig-Penney
(KP) lattice model [19]—a lattice of nearly δ-function
potentials. We study the band structure and dissipation,
and find that the dark state nature of this potential re-
sults in suppressed scattering, in good agreement with
theoretical models.

Our approach is illustrated in Fig. 1 (a). A three-
level system is coupled in a Λ-configuration by two
optical fields: a spatially varying strong control field
Ωc(x) = Ωc sin (kx) and a constant weak probe field
Ωp. The excited state |e〉 can decay to either ground
state |gi〉. Within the Born-Oppenheimer (BO) approx-
imation, slowly-moving atoms in the dark state |E0(x)〉
are decoupled from |e〉, where |E0(x)〉 = sin(α)|g1〉 −
cos(α)|g2〉, and α(x) = arctan[Ωc(x)/Ωp] [3]. The two
bright states E±(x) have excited state component |e〉,
leading to light scattering. As shown in Fig. 1 (b), the
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FIG. 1. (Color online) Level structures and experimental ge-
ometry. (a) The three levels in 171Yb used to realize the
dark state are isolated from the fourth 3P1, mF = +1/2
state by a large magnetic field. They are coupled by a strong
σ− polarized control field Ωc (green) and a weak π polar-
ized probe field Ωp (orange). The resulting dark state is a
superposition of the ground states |g1〉 and |g2〉, with rela-
tive amplitudes determined by Ωc(x)/Ωp. (b) Spatial depen-
dence of the dark state composition is created using a stand-
ing wave control field Ωc(x), and a traveling wave probe field
Ωp. The geometric potential V (x) (black) arises as the dark
state rapidly changes its composition near the nodes of the
standing wave. (c) The two counter-propagating σ− beams
creating the standing wave are aligned with a strong magnetic
field along x, while the π beam travels along y.

fields are arranged in such a way that the dark state
changes composition over a narrow region, depending on
the ratio ε = Ωp/Ωc. The kinetic energy associated with
this large gradient in the spin wavefunction gives rise to
a conservative optical potential V (x) [3, 4] for atoms in
|E0(x)〉,

V (x) =
~2

2m

(
dα

dx

)2

= ER
ε2cos2(kx)

[ε2 + sin2(kx)]2
(1)

where k = 2π/λ, ER = ~2k2/2m is the recoil energy,
m is the mass of the atom. The potential V (x) can be
viewed as arising from non-adiabatic corrections to the
BO potential [3, 4] or artificial scalar gauge potential [18,
20, 21]. When ε � 1 this creates a lattice of narrow
barriers spaced by λ/2, with the barrier height scaling as
1/ε2, and the full width half maximum scaling as 0.2λε
(Fig. 1(b)).

The potential V (x) exhibits several properties that
distinguish it from optical potentials based on ac-Stark
shifts: (1) the explicit dependence on ~, via the recoil
energy ER, reveals the quantum nature of V (x) arising
from the gradient in the wavefunction, whereas a typi-
cal optical potential can be described entirely classically
as an induced dipole interacting with the electric field
of the laser; (2) since gradients in wavefunctions always
cost energy, V (x) is always repulsive; (3) the geometric

nature of the potential results in it being only dependent
on ε. By deriving both fields from the same laser it is
relatively insensitive to technical noise; and (4) unlike
near-field guided modes [9, 10], our scheme works in the
far field, thus avoiding the decoherence associated with
the proximity of surfaces.

We realize the Λ-configuration using three states se-
lected from the 1S0, F = 1/2 and 3P1, F = 1/2 hy-
perfine manifolds in 171Yb. The two 1S0 ground states
mF = ±1/2 comprise the lower two states |g1〉 and |g2〉
(see Fig. 1 (a)). The 3P1, mF = −1/2 state, with inverse
lifetime Γ = 2π × 182 kHz, makes up the third state |e〉
in the Λ-configuration. The |gi〉 → |e〉 transitions are
isolated from transitions to the other 3P1, mF = +1/2

states by applying a 12 mT magnetic field ~B to Zeeman
split the two 3P1 states by ∆B = 1.8× 103 Γ. The same
field slightly splits the 1S0 ground states by -0.5 Γ due to
the small nuclear magnetic moment. The standing-wave
control field Ωc(x), traveling along ~B, is produced by two
counter-propagating σ− laser beams that couple the |g2〉
and |e〉 states with amplitudes Ωc1e

ikx and Ωc2e
−ikx. A

third beam, π polarized and traveling normal to ~B, cou-
ples the |g1〉 and |e〉 states with amplitude Ωpe

iky. The
frequency of the control and probe beams can be cho-
sen to set the single-photon and two-photon detunings,
∆ and δ. We define δ = 0 as the dark state condition for
the isolated three-level system, accounting for the Zee-
man splitting. Off-resonant couplings to other states can
introduce light shifts which require nonzero δ to maintain
the dark state condition.

We create an ultracold 171Yb gas in a bichromatic
crossed dipole trap by sympathetic cooling with Rb
atoms that are also magnetically confined [22, 23]. After
Yb atoms are collected with a temperature of ' 300 nK
(T/TF = 1.10, where TF is the Fermi temperature), the
magnetic field in the x direction is ramped up in 100 ms
to 12 mT, removing Rb from the trap. The Yb atoms
are then optically pumped into |g1〉 using a 50 ms pulse
from one of the control beams, resulting in ' 1.5 × 105

Yb atoms polarized. The small 171Yb scattering length
(-3a0, with a0 the Bohr radius), plus the lack of s-wave
scattering in polarized fermions allow us to neglect inter-
actions. The Rabi frequencies of each of the three beams
are calibrated by measuring the two-photon Rabi fre-
quencies from |g1〉 → |g2〉 at large ∆ with different pairs
of beams. The laser polarization purity and alignment
to ~B are carefully optimized, such that the residual frac-
tion of wrong polarization measured in Rabi frequency
is less than 0.5 %. To load Yb into the ground band
of the dark state lattice, we first populate the spatially
homogeneous dark state by ramping on Ωc1 followed by
Ωp, and then adiabatically ramp on Ωc2 in 1 ms, creat-
ing the lattice. We measure the momentum distribution
using a band mapping sequence [24], by first ramping
off Ωc2 in 0.5 ms, and then suddenly turning off all the
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FIG. 2. (Color online) (a) Band mapping results for atoms
loaded into the dark state lattice with three beams (upper),
and with only Ωc beams (lower). The white traces show the
integrated momentum distribution in each direction (x is the
lattice direction). (b,c) Band spectroscopy: in (c) we plot
the TOF column density integrated over z after shaking the
lattice vs. the shaking frequency; in (b) we plot the fraction of
the population excited to the p-band (dark green) and d-band
(magenta) Brillouin zones (see (c)) vs. shaking frequency.
Gaussian fits (colored lines in (b)) are used to determine the
center frequency and the width of the transition. (d) Band
spacing scaling: En+1−En is plotted vs. the band index n of
a dark state lattice with Ωc = 70Γ, Ωp = 10Γ, ∆ = 22Γ and
δ = 0. The grey vertical bars indicate the transition width
inferred from the measurements, while the green rectangles
are predictions of the expected band spacings and widths [25].

other light fields. We take absorption images after time-
of-flight (TOF) along y to measure the momentum along
x and z. See [25] for further details.

The existence of lattice structure of V (x) leads to Bril-
louin zones (BZ), visible in TOF images taken after band
mapping. Since kBT is less than the band gap, the popu-
lation is predominantly in the first BZ and distinct band
edges are visible (upper panel in Fig. 2 (a)). The lower
panel shows the result with no probe beam, where we
find a nearly Gaussian distribution in the lattice direc-
tion. We also see nearly Gaussian distributions for atoms
loaded in the other two-beam configurations: Ωc1 & Ωp

and Ωc2 & Ωp.
For small ε, this lattice maps to a 1D KP model. One

characteristic feature of the KP lattice is that the en-
ergy of the nth-band scales as n2ER, such that the band
spacing increases with n. In contrast, in a deep sinu-
soidal lattice the band spacing decreases with n. To map
out the band structure, we excite atoms from the ground
(s-) band into the higher bands by shaking the lattice
using phase modulation of one of the σ− beams. After
band mapping we measure the band populations, which
become separated after TOF (see Fig. 2 (c)). Fig. 2 (b)
plots the frequency-dependent excitation into the first (p-
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FIG. 3. (Color online) Band structure scalings. Energies of
the p- and the d-bands with respect to the s-band are plotted.
(a) Vary ε: Ωc = 100Γ, Ωp = 5Γ − 20Γ, ∆ = 22Γ, and
δ = 0. Dashed lines indicate the allowed transition energies
predicted from modeling V (x) alone, while the shaded regions
are from a model including couplings to the bright states.
Upper panels show representative potentials for the dark state
(green) and bright state (blue). At ε = 0.075, the bright/dark
states are no longer good basis states because of the strong
coupling between them. (b) Vary δ: Ωc = 70Γ, Ωp = 10Γ,
∆ = 22Γ. Upper panels show calculated dark state potentials
for positive and negative δ.

) and second (d-) excited bands for ε = 0.14, extracted
from the data in Fig. 2 (c). The s → d excitation arises
from a two-step process involving the p-band. We map
out the band structure up to the g-band and plot the
energy differences for adjacent bands (see Fig. 2 (d)),
which increases monotonically with n. The green rectan-
gles show the theoretical band spacings and widths, cal-
culated from a model that includes both the light shifts
from states outside the three-level system [25], and mix-
ing with the bright states.

Another property of a KP lattice is that in the deep
lattice limit, its band structure is almost independent of
the barrier strength (the area under the potential for a
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single barrier), which scales with 1/ε. The band spacings
for different ε are plotted in Fig. 3 (a) for fixed Ωc = 100Γ
and Ωp varied from 5Γ to 20Γ. As expected, the band
spacings are almost independent of ε, even though the
probe power varies by an order of magnitude. The up-
per panels of Fig. 3 (a) show the potentials of the upper
bright state (blue) and dark state (green) for three ε. For
ε ≤ 0.1, mixing between E0(x) and E±(x) states modi-
fies the band structure, reducing the band spacing. For
ε ' 0.1 we realize a barrier width of 10 nm with min-
imal coupling to the bright state. The shaded regions
are predictions based on a model that takes bright state
couplings into account, which are in better agreement
with the measured spacings, compared to the model that
has no couplings (dashed line). We attribute the dis-
crepancy between theory and experiment to the residual
polarization imperfections, calibration errors in the opti-
cal intensity, and limitations of band spectroscopy. We
note that the theory predicts a vanishing band width
near ε ' 0.125 and the growth of the bandwidth at even
smaller ε, due to the interference of dark state and bright
state mediated tunneling [25].

Away from δ = 0, the state is no longer completely
dark and it experiences an additional periodic potential
with amplitude δ [25, 29] (Fig. 3 (b)). This additional
potential perturbs the KP lattice and the band struc-
ture. We verify this by measuring the band spacings as
a function of δ (Fig. 3 (b)), and find it agrees with the
prediction (shaded area), with the systematic deviation
likely coming from the same factors as in Fig. 3 (a).

Finally, we study dissipation. The non-adiabatic cor-
rections to the BO potential that give rise to V (x) also
weakly couple the dark state with the bright states, which
leads to light scattering, heating the atoms out of the
trap. We measure the lifetime, τ , in a dark state lattice
(Fig. 4 (a)) for different ∆, and find it significantly longer
for ∆ > 0 than for ∆ < 0. This is in contrast to an optical
lattice based on ac-Stark shifts, where heating is indepen-
dent of the sign of ∆ [30, 31]. To intuitively understand
this asymmetry, we use the model described in [4] and
note that the coupling to the bright states takes place in-
side the barrier. An atom can scatter light by admixing
with the bright states E±(x) (approximately ∆ indepen-
dent) or exiting into the energy-allowed E−(x) state via
non-adiabatic couplings (strongly ∆ dependent). The
E−(x) state (red, Fig. 4 (a), upper panels) contributes
more to the loss, explaining the ∆ asymmetry. The re-
sult of the model [25] is depicted as the black line, with
an empirical scale factor of 2.2 applied to the theory to
account for the unknown relationship between the scat-
tering rate and loss rate (1/τ). The lifetime in a homoge-
neous control field when one of the Ωc beams is blocked
is shown in Fig. 4 (a) inset. The τ ' 4 × 105/Γ life-
time is almost independent of ∆ as theory would predict,
and is 70 % of the expected lifetime due to non-adiabatic
coupling to the bright states and off-resonant scattering

from states outside the three-level system.
The non-adiabatic bright state coupling also leads to

a counter-intuitive dependence of the dissipation on the
laser power. Fig. 4 (b) shows the lifetime at constant
ε as a function of Rabi frequencies. Remarkably, the
lifetime increases with Rabi frequency. In contrast, for a
regular optical lattice at a fixed detuning the lifetime does
not improve with more laser power. For the dark state
lattice, larger Ωc,p increases the separations between BO
potentials, resulting in decreased scattering. In general
the lifetime improves with more laser power and at blue
detuning. However, couplings to E+(x) adversely affects
the barrier height (similar to the case with ε� 1 in Fig. 3
(a)). With realistic increase in laser intensity, we can
potentially improve the lifetime by an order of magnitude
while maintaining the ultra-narrow barriers.
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FIG. 4. (Color online) (a) Lifetime of dark state lattice, τ ,
scaled by the excited state lifetime Γ−1 vs. ∆, with Ωc = 70Γ,
Ωp = 10Γ, and δ = 0. Inset: lifetime of the dark state in
spatially homogeneous control fields, with Ωc1 = 35Γ, Ωc2 =
0, Ωp = 10Γ, and δ = 0. Upper three panels: the two bright
state potentials E−(x) (red) and E+(x) (blue), and the dark
state potential (green) at different ∆. (b) Lifetime vs. Ωp

in a dark state lattice where ε = 0.2 and ∆ = 0. The solid
black lines are predictions scaled with a factor 2.2 (except
for (a) inset, where no scaling is applied). The error bars
represent one standard deviation uncertainty from fitting the
population decay data.
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The conservative nanoscale optical potential demon-
strated here adds to the toolbox of optical control of
atoms, enabling experiments requiring sub-wavelength
motional control of atoms. Such sharp potential barriers
could be useful for the creation of narrow tunnel junctions
for quantum gases [33] or for building sharp-wall box-like
traps [34]. In addition, spin and motional localization
on small length scales can enhance the energy scale of
weak, long range interactions [3]. The dark state lattice
is generalizable to 2D, and for example, can be used to
study Anderson localization with random strength in the
barrier height [32]. By stroboscopically shifting the lat-
tice [35], the narrow barriers should enable optical lat-
tices with spacings much smaller than the λ/2 spacing
set by the diffraction limit, which would significantly in-
crease the characteristic energy scales relevant for inter-
action many-body atomic systems.
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