This is the accepted manuscript made available via CHORUS. The article has been published as:

Dark State Optical Lattice with a Subwavelength Spatial Structure

Phys. Rev. Lett. **120**, 083601 — Published 20 February 2018

DOI: [10.1103/PhysRevLett.120.083601](https://doi.org/10.1103/PhysRevLett.120.083601)
Coherent control of position and motion of atoms with light has been a primary enabling technology in the physics of ultracold atoms. The paradigmatic examples of conservative optical potentials are the optical dipole trap and optical lattices, generated by far off-resonant laser fields, with the ac-Stark shift of atomic levels as the underlying mechanism. The spatial resolution for such optical potential landscapes is determined by the diffraction limit, which is of order the wavelength of the light λ. This fundamentally limits optical manipulation of atoms. For example, in quantum simulation with atoms in optical lattices, the minimum lattice constant is $\lambda/2$, setting the energy scale for Hubbard models for both hopping (kinetic energy) and interaction of atoms, with challenging temperature requirements to observe quantum phases of interest [1]. Developing tools to overcome the diffraction limit, allowing coherent optical manipulation of atoms on the sub-wavelength scale, is thus an outstanding challenge. Following recent proposals [2–4] we report below first experiments demonstrating coherent optical potentials with sub-wavelength spatial structure by realizing a Kronig-Penney type optical lattice with barrier widths below $\lambda/50$.

In the quest to beat the diffraction limit, several ideas have been proposed to create coherent optical potentials with sub-wavelength structure. These include Fourier-synthesis of lattices using multiphoton Raman transitions [5, 6], optical or radio-frequency dressing of optical potentials [7, 8], and trapping in near-field guided modes with nano-photonic systems [9, 10] (although they suffer from decoherence induced by nearby surfaces). An alternative approach uses the spatial dependence of the nonlinear atomic response associated with the dark state of a three-level system [11–16], as a means to realize sub-wavelength atomic addressing and excitation. The sub-wavelength resolution arises when optical fields are arranged so that the internal dark state composition varies rapidly (“twists”) over a short length scale.

As proposed in [3, 4], such a sub-wavelength twist can also be used to create a conservative potential with narrow spatial extent, due to the energy cost of the kinetic energy term of the Hamiltonian [2, 17, 18]. Unlike ac-Stark shift potentials, this twist-induced potential is a quantum effect, with magnitude proportional to \hbar. Using this effect, we create 1D lattices with barrier widths less than $\lambda/50$. This potential realizes the Kronig-Penney (KP) lattice model [19]—a lattice of nearly δ-function potentials. We study the band structure and dissipation, and find that the dark state nature of this potential results in suppressed scattering, in good agreement with theoretical models.

Our approach is illustrated in Fig. 1 (a). A three-level system is coupled in a Λ-configuration by two optical fields: a spatially varying strong control field $\Omega_\gamma(x) = \Omega_\gamma \sin(\kappa x)$ and a constant weak probe field Ω_p. The excited state $|e\rangle$ can decay to either ground state $|g_i\rangle$. Within the Born-Oppenheimer (BO) approximation, slowly-moving atoms in the dark state $|E_0(x)\rangle$ are decoupled from $|e\rangle$, where $|E_0(x)\rangle = \sin(\alpha)|g_1\rangle - \cos(\alpha)|g_2\rangle$, and $\alpha(x) = \arctan[\Omega_\gamma(x)/\Omega_p]$ [3]. The two bright states $E_{+}(x)$ have excited state component $|e\rangle$, leading to light scattering. As shown in Fig. 1 (b), the
nature of the potential results in it being only dependent on ϵ. By deriving both fields from the same laser it is relatively insensitive to technical noise; and (4) unlike near-field guided modes [9, 10], our scheme works in the far field, thus avoiding the decoherence associated with the proximity of surfaces.

We realize the A-configuration using three states selected from the 1S_0, $F = 1/2$ and 3P_1, $F = 1/2$ hyperfine manifolds in 171Yb. The two 1S_0 ground states $m_F = \pm 1/2$ comprise the lower two states $|g_1\rangle$ and $|g_2\rangle$ (see Fig. 1(a)). The 3P_1, $m_F = -1/2$ state, with inverse lifetime $\Gamma = 2\pi \times 182$ kHz, makes up the third state $|e\rangle$ in the A-configuration. The $|g_1\rangle \rightarrow |e\rangle$ transitions are isolated from transitions to the other 3P_1, $m_F = +1/2$ states by applying a 12 mT magnetic field \vec{B} to Zeeman split the two 3P_1 states by $\Delta B = 1.8 \times 10^3 \Gamma$. The same field slightly splits the 1S_0 ground states by -0.5 Γ due to the small nuclear magnetic moment. The standing-wave control field $\Omega_c(x)$, traveling along \vec{B}, is produced by two counter-propagating σ^- laser beams that couple the $|g_2\rangle$ and $|e\rangle$ states with amplitudes $\Omega_{c1}e^{ikx}$ and $\Omega_{c2}e^{-ikx}$. A third beam, π polarized and traveling normal to \vec{B}, couples the $|g_1\rangle$ and $|e\rangle$ states with amplitude $\Omega_{e}e^{iky}$. The frequency of the control and probe beams can be chosen to set the single-photon and two-photon detunings, Δ and δ. We define $\delta = 0$ as the dark state condition for the isolated three-level system, accounting for the Zeeman splitting. Off-resonant couplings to other states can introduce light shifts which require nonzero δ to maintain the dark state condition.

We create an ultracold 171Yb gas in a bichromatic crossed dipole trap by sympathetic cooling with Rb atoms that are also magnetically confined [22, 23]. After Yb atoms are collected with a temperature of ~ 300 nK ($T/T_F = 1.10$, where T_F is the Fermi temperature), the magnetic field in the x direction is ramped up in 100 ms to 12 mT, removing Rb from the trap. The Yb atoms are then optically pumped into $|g_1\rangle$ using a 50 ms pulse from one of the control beams, resulting in $\sim 1.5 \times 10^5$ Yb atoms polarized. The small 171Yb scattering length (-3a_0, with a_0 the Bohr radius), plus the lack of s-wave scattering in polarized fermions allow us to neglect interactions. The Rabi frequencies of each of the three beams are calibrated by measuring the two-photon Rabi frequencies from $|g_1\rangle \rightarrow |g_2\rangle$ at large Δ with different pairs of beams. The laser polarization purity and alignment to \vec{B} are carefully optimized, such that the residual fraction of wrong polarization measured in Rabi frequency is less than 0.5 %. To load Yb into the ground band of the dark state lattice, we first populate the spatially homogeneous dark state by ramping up Ω_{c1} followed by Ω_p, and then adiabatically ramp up Ω_{c2} in 1 ms, creating the lattice. We measure the momentum distribution using a band mapping sequence [24], by first ramping off Ω_{c2} in 0.5 ms, and then suddenly turning off all the

![FIG. 1. (Color online) Level structures and experimental geometry. (a) The three levels in 171Yb used to realize the dark state are isolated from the fourth 3P_1, $m_F = +1/2$ state by a large magnetic field. They are coupled by a strong σ^- polarized control field Ω_c (green) and a weak π polarized probe field Ω_p (orange). The resulting dark state is a superposition of the ground states $|g_1\rangle$ and $|g_2\rangle$, with relative amplitudes determined by $\Omega_c(x)/\Omega_p$. (b) Spatial dependence of the dark state composition is created using a standing wave control field $\Omega_c(x)$, and a traveling wave probe field Ω_p. The geometric potential $V(x)$ (black) arises as the dark state rapidly changes its composition near the nodes of the standing wave. (c) The two counter-propagating σ^- beams creating the standing wave are aligned with a strong magnetic field along x, while the π beam travels along y.](image)
other light fields. We take absorption images after time-of-flight (TOF) along y to measure the momentum along x and z. See [25] for further details.

The existence of lattice structure of $V(x)$ leads to Brillouin zones (BZ), visible in TOF images taken after band mapping. Since k_BT is less than the band gap, the population is predominantly in the first BZ and distinct band edges are visible (upper panel in Fig. 2 (a)). The lower panel shows the result with no probe beam, where we find a nearly Gaussian distribution in the lattice direction. We also see nearly Gaussian distributions for atoms loaded in the other two-beam configurations: Ω_{c1} & Ω_p and Ω_{c2} & Ω_{p}.

For small ϵ, this lattice maps to a 1D KP model. One characteristic feature of the KP lattice is that the energy of the nth-band scales as $n^2 E_R$, such that the band spacing \textit{increases} with n. In contrast, in a deep sinusoidal lattice the band spacing \textit{decreases} with n. To map out the band structure, we excite atoms from the ground (s-) band into the higher bands by shaking the lattice using phase modulation of one of the σ^- beams. After band mapping we measure the band populations, which become separated after TOF (see Fig. 2 (c)). Fig. 2 (b) plots the frequency-dependent excitation into the first (p-) and second (d-) excited bands for $\epsilon = 0.14$, extracted from the data in Fig. 2 (c). The $s \rightarrow d$ excitation arises from a two-step process involving the p-band. We map out the band structure up to the g-band and plot the energy differences for adjacent bands (see Fig. 2 (d)), which increases monotonically with n. The green rectangles show the theoretical band spacings and widths, calculated from a model that includes both the light shifts from states outside the three-level system [25], and mixing with the bright states.

Another property of a KP lattice is that in the deep lattice limit, its band structure is almost independent of the barrier strength (the area under the potential for a
single barrier), which scales with $1/\epsilon$. The band spacings for different ϵ are plotted in Fig. 3 (a) for fixed $\Omega_p = 100\Gamma$ and Ω_c varied from 5Γ to 20Γ. As expected, the band spacings are almost independent of ϵ, even though the probe power varies by an order of magnitude. The upper panels of Fig. 3 (a) show the potentials of the upper bright state (blue) and dark state (green) for three ϵ. For $\epsilon \leq 0.1$, mixing between $E_0(x)$ and $E_{\pm}(x)$ states modifies the band structure, reducing the band spacing. For $\epsilon \approx 0.1$ we realize a barrier width of 10 nm with minimal coupling to the bright state. The shaded regions are predictions based on a model that takes bright state couplings into account, which are in better agreement with the measured spacings, compared to the model that has no couplings (dashed line). We attribute the discrepancy between theory and experiment to the residual polarization imperfections, calibration errors in the optical intensity, and limitations of band spectroscopy. We note that the model predicts a vanishing band width near $\epsilon \approx 0.125$ and the growth of the bandwidth at even smaller ϵ, due to the interference of dark state and bright state mediated tunneling [25].

Away from $\delta = 0$, the state is no longer completely dark and it experiences an additional periodic potential with amplitude δ [25, 29] (Fig. 3 (b)). This additional potential perturbs the KP lattice and the band structure. We verify this by measuring the band spacings as a function of δ (Fig. 3 (b)), and find it agrees with the prediction (shaded area), with the systematic deviation likely coming from the same factors as in Fig. 3 (a).

Finally, we study dissipation. The non-adiabatic corrections to the BO potential that give rise to $V(x)$ also weakly couple the dark state with the bright states, which leads to light scattering, heating the atoms out of the trap. We measure the lifetime, τ, in a dark state lattice (Fig. 4 (a)) for different Δ, and find it significantly longer for $\Delta > 0$ than for $\Delta < 0$. This is in contrast to an optical lattice based on ac-Stark shifts, where heating is independent of the sign of Δ [30, 31]. To intuitively understand this asymmetry, we use the model described in [4] and note that the coupling to the bright states takes place inside the barrier. An atom can scatter light by admixing with the bright states $E_{\pm}(x)$ (approximately Δ independent) or exiting into the energy-allowed $E_{-}(x)$ state via non-adiabatic couplings (strongly Δ dependent). The $E_{-}(x)$ state (red, Fig. 4 (a), upper panels) contributes more to the loss, explaining the Δ asymmetry. The result of the model [25] is depicted as the black line, with an empirical scale factor of 2.2 applied to the theory to account for the unknown relationship between the scattering rate and loss rate ($1/\tau$). The lifetime in a homogeneous control field when one of the Ω_c beams is blocked is shown in Fig. 4 (a) inset. The $\tau \approx 4 \times 10^5 \Gamma$ lifetime is almost independent of Δ as theory would predict, and is 70 % of the expected lifetime due to non-adiabatic coupling to the bright states and off-resonant scattering from states outside the three-level system.

The non-adiabatic bright state coupling also leads to a counter-intuitive dependence of the dissipation on the laser power. Fig. 4 (b) shows the lifetime at constant ϵ as a function of Rabi frequencies. Remarkably, the lifetime increases with Rabi frequency. In contrast, for a regular optical lattice at a fixed detuning the lifetime does not improve with more laser power. For the dark state lattice, larger $\Omega_{c,p}$ increases the separations between BO potentials, resulting in decreased scattering. In general the lifetime improves with more laser power and at blue detuning. However, couplings to $E_{\pm}(x)$ adversely affects the barrier height (similar to the case with $\epsilon \ll 1$ in Fig. 3 (a)). With realistic increase in laser intensity, we can potentially improve the lifetime by an order of magnitude while maintaining the ultra-narrow barriers.

![FIG. 4. (Color online) (a) Lifetime of dark state lattice, τ, scaled by the excited state lifetime Γ^{-1} vs. Δ, with $\Omega_c = 70\Gamma$, $\Omega_p = 10\Gamma$, and $\delta = 0$. Inset: lifetime of the dark state in spatially homogeneous control fields, with $\Omega_{c,1} = 35\Gamma$, $\Omega_{c,2} = 0$, $\Omega_p = 10\Gamma$, and $\delta = 0$. Upper three panels: the two bright state potentials $E_{\pm}(x)$ (red) and $E_{\mp}(x)$ (blue), and the dark state potential (green) at different Δ. (b) Lifetime vs. Ω_p/Γ in a dark state lattice where $\epsilon = 0.2$ and $\Delta = 0$. The solid black lines are predictions scaled with a factor 2.2 (except for (a) inset, where no scaling is applied). The error bars represent one standard deviation uncertainty from fitting the population decay data.](image-url)
The conservative nanoscale optical potential demonstrated here adds to the toolbox of optical control of atoms, enabling experiments requiring sub-wavelength motional control of atoms. Such sharp potential barriers could be useful for the creation of narrow tunnel junctions for quantum gases [33] or for building sharp-wall box-like traps [34]. In addition, spin and motional localization on small length scales can enhance the energy scale of weak, long range interactions [3]. The dark state lattice is generalizable to 2D, and for example, can be used to study Anderson localization with random strength in the barrier height [32]. By stroboscopically shifting the lattice [35], the narrow barriers should enable optical lattices with spacings much smaller than the $\lambda/2$ spacing set by the diffraction limit, which would significantly increase the characteristic energy scales relevant for interaction many-body atomic systems.

* yuw127@umd.edu
† These two authors contributed equally

[29] P. Bienias et al., In preparation.

ACKNOWLEDGMENTS

We thank Victor M. Galitski for stimulating discussions and Luis A. Orozco for a close reading of the manuscript. Y.W., S.S., T-C. T. J.V.P., and S.L.R. acknowledge support by NSF PFC at JQI and ONR grant N000141712411. P.B. and A.V.G. acknowledge support by NSF PFC at JQI, AFOSR, ARL CDQI, ARO, ARO MURI, and NSF QIS. M.Ł. acknowledges support of the National Science Centre, Poland via grant N000141712411. P.B. and A.V.G. acknowledge support from the ERC Synergy Grant UQUAM, the Austrian Science Fund through SFB FQUS (FWF Project No. F4016-N23), and EU FET Proactive Initiative SIQS.