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Nonequilibrium processes of small systems such as molecular machines are ubiquitous in biology,
chemistry and physics, but are often challenging to comprehend. In the past two decades, sev-
eral exact thermodynamic relations of nonequilibrium processes, collectively known as fluctuation
theorems, have been discovered and provided critical insights. These fluctuation theorems are gen-
eralizations of the second law, and can be unified by a differential fluctuation theorem. Here we
perform the first experimental test of the differential fluctuation theorem, using an optically levi-
tated nanosphere in both underdamped and overdamped regimes, and in both spatial and velocity
spaces. We also test several theorems that can be obtained from it directly, including a generalized
Jarzynski equality that is valid for arbitrary initial states, and the Hummer-Szabo relation. Our
study experimentally verifies these fundamental theorems, and initiates the experimental study of
stochastic energetics with the instantaneous velocity measurement.

In the past two decades, there were significant devel-
opments in nonequilibrium statistical mechanics of small
systems in which thermal fluctuation is influential [1].
The most prominent progresses are the discoveries of
various fluctuation theorems (FT), which connect mi-
croscopic dynamics with thermodynamic behaviors [1].
These FT, such as the Jarzynski equality (JE) [2, 3] and
the Crooks fluctuation theorem (CFT) [4, 5], reformu-
late the inequality of the second law into equalities, and
reveal the universal laws that the fluctuating thermo-
dynamic variables must obey in processes arbitrarily far
from thermal equilibrium. As they are refinements of the
second law on individual trajectories, they provide criti-
cal understandings of behaviors of biological systems at
the single molecular level [3, 5–10] and nonequilibrium
dynamics of a wide range of physical systems [11–28].
While JE and CFT are valid for processes far from ther-
mal equilibrium, they require the initial state to be in a
thermal equilibrium state.

In 2000, a differential fluctuation theorem (DFT) con-
necting the joint probabilities of entropy production and
arbitrary generalized coordinates (e.g. position and ve-
locity coordinates) was derived by Jarzynski [29]. An
equivalent DFT for work was derived by Nobel laureate
Karplus and his colleagues Maragakis and Spichty in 2008
[20]. It is remarkable that the DFT can unify various FT
as long as detailed balance is not violated [20](see Fig.
S1 in the supplemental material for the relation between
different fluctuation theorems [30]). The DFT also leads
to a generalized Jarzynski equality (GJE) for arbitrary
initial states [24]. Such ability is rooted from the fact
that most FT originate from the same fundamental prin-

ciple: the microscopic reversibility connecting forward
and reverse trajectories [1, 18, 24, 29, 31–33]. Testing
the DFT and other FT would deepen our understanding
of the second law and nonequilibrium physics, including
dissipation [19], hysterisis [34], and irreversibility [35].
In order to test the DFT at its desired level of detail,
we need large statistics and the ability to track individ-
ual trajectories of a stochastic process in the phase space
[20], which requires the measurement of instantaneous
velocities of Brownian motion [36].

In this work, we experimentally test the differential
fluctuation theorem [20, 29] using an optically levitated
nanosphere which can be trapped in air continuously for
weeks for acquiring large sets of data. Our ultrasen-
sitive optical tweezer can measure both instantaneous
position and instantaneous velocity [36] of a levitated
nanosphere to test DFT. Over one million experimen-
tal cycles per setting (∼ 1010 position data points per
setting with a 10 MHz acquisition rate) provide suffi-
cient statistics to validate the DFT at its desired level
of detail, e.g., testing DFT for nonequilibrium processes
connecting two points in the position-velocity space [20].
Several fluctuation theorems, including the JE [2, 3], the
CFT [4, 5], the Hummer-Szabo relation (HSR) [6–8], the
GJE [19, 24, 31], the extended fluctuation relation (EFR)
[9, 10], and the fluctuation theorem for ligand binding
(FTLB) [37] can be unified by the DFT [18, 24, 31, 32].
We have also tested several such theorems. In our ex-
periment, the air pressure can be adjusted to test these
theorems in both underdamped and overdamped regimes.
This study demonstrates a powerful approach applicable
in exploring a wide range of nonequilibrium systems [3, 5–
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FIG. 1. A, Experimental scheme. A silica nanosphere (blue
sphere) is trapped in an optical tweezer formed by a focused
1550-nm laser beam (magenta). A series of 532-nm laser
pulses (green) exerts an optical force on the nanosphere to
drive nonequilibrium processes. Within each pulse, an op-
tical force is rapidly ramped from foff at time t1 to fon at
time t2 during the forward process (green pulse). The reverse
process from time t3 to t4 is the time-reversed correspon-
dence of the forward process. B, An example of experimen-
tal data. Vertical slides represent the measured time snap-
shots of the probability distributions at times t1, t2, t3, and
t4 as illustrated in A. Black curves represent experimental
phase-space trajectories during forward processes initialized
at (x1, v1) and finalized at (x2, v2), and during reverse pro-
cesses initialized at the (x2,−v2) and finalized at (x1,−v1).
Here x1 = −19 nm, x2 = 55 nm, v1 = −7 mm/s, and
v2 = 7 mm/s. The nanosphere is levitated in air at 50 torr,
and foff = 0, fon = 340 fN.

13, 15, 16] since a complete description of the stochastic
system includes the information of both position and ve-
locity.

Our experiments are carried out using a silica
nanosphere levitated by a 1550 nm optical tweezer
(Fig. 1A) [38]. The nonequilibrium processes are con-
trolled by a force parameter f which is an optical force
exerted on the nanosphere by a 532-nm laser beam. In a
forward process, the optical force is ramped from foff at
time t1 to fon at time t2. The reverse process is from t3 to
t4. The DFT connects the forward and reverse processes
as [20, 29]:

PR(−W, b∗ → a∗)
/
PF (W,a→ b) = e−β(W−∆F ), (1)

where a, b can be arbitrary generalized coordinates. In
our work, a and b denote the position (x) and/or ve-
locity (v) coordinate of a levitated nanosphere, e.g., a
can be x, or v, or (x, v). PF (W,a → b) is the forward
joint probability of performing nonequilibrium work W
for those trajectories starting from a and ending at b,
and PR(−W, b∗ → a∗) is the reverse joint probability.
The work distribution PF (W ) can be obtained by inte-
grating PF (W,a → b) over a and b. The asterisk (*)
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FIG. 2. Examples of arbitrary nonequilibrium initial states
of trajectory ensembles prepared by an information-based
method. A, Nonequilibrium initial states with narrow distri-
butions in position or velocity. B, An exotic nonequilibirum
state with a P-shaped distribution in phase space. C, Uniform
distribution within a rectangle (−15 nm < x < 0, −10 mm/s
< v < 0) in the phase space . D, A microcanonical ensemble
with the energy shell 1.3kBT < E < 1.35kBT. The number
of experimental trajectories started from each nonequilibrium
initial state is labeled next to its distribution.

denotes a reversal of the velocity components of a or b.
∆F = −(f2

on− f2
off)/(2k) is the free energy difference be-

tween the equilibrium states of the optical forces fon and
foff . Here k is the trap stiffness. β = 1/(kBT ), where kB
is the Boltzmann constant, and T = 296 K is the room
temperature.

To test the DFT in detail, over one million experimen-
tal forward-reverse cycles (500 µs/cycle) are performed
for a given irreversible setting. Their distributions in the
position-velocity space are shown in Fig. 1B. The driv-
ing optical forces significantly shift the distributions away
from the undriven ones. Black curves in Fig. 1B are a few
examples of measured trajectories evolving from a given
point to a different point in the phase space during for-
ward (or reverse) processes. Due to thermal fluctuation,
it is not possible to have two trajectories starting from
exactly the same point in the phase space. Here we use
(x, v) to represent points within (x± σx

11 , v ±
σv

11 ), where
σx and σv are the standard deviations of the position and
velocity distributions, respectively.

Based on our large sets of experimental data and our
ability to measure both the instantaneous velocity and
position of a nanoparticle, we develop an efficient method
to prepare arbitrary nonequilibrium initial states by con-
ditionally selecting trajectories that start from the de-
sired initial states. Some examples of arbitrary nonequi-
librium initial states prepared by our information-based
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FIG. 3. Testing the differential fluctuation theorem in the underdamped regime. A, Optical force. B-C, Measured position and
velocity trajectories. A single trajectory is shown in blue, and the averaged trajectory of over one million trajectories is shown
in red. The gray shaded regions in A-C denote the forward and reverse intervals, respectively. It takes roughly 4.6 µs for the
optical force strength to switch from 10% to 90% level. D, An example of probabilities PF (W |x1 → x2) and PR(−W |x2 → x1)
in position coordinate. E, An example of probabilities PF (W |v1 → v2) and PR(−W |−v2 → −v1) in velocity coordinate. The
label of horizontal axis in D and E is W (kBT ). F, G Testing the DFT in position and velocity spaces. The small markers with

different colors represent measurements of loge
PR(−W,x2→x1)
PF (W,x1→x2)

and loge
PR(−W,−v2→−v1)
PF (W,v1→v2)

for 121 different {x1, x2} and {v1, v2}
combinations, respectively. The big magenta markers are results for parameters shown in D and E, respectively. The black
lines represent −β(W −∆F ).

method are shown in Fig. 2. They are used to test the
DFT and the GJE for arbitrary initial states.

Fig. 3 shows our experimental results of testing DFT
with a 209-nm-radius nanopshere in the underdamped
regime (see supplemental online material for more in-
formation [30]). The optical force (Fig. 3A) is moni-
tored using a fraction of the 532-nm laser split from the
main beam. Fig. 3B-C show the dynamic evolution of
the nanosphere in the position and velocity coordinates,
respectively. Since the irreversible ramps (∼ 4.6 µs)
are faster than the velocity (∼ 8.6 µs) and position
(∼ 100 µs) relaxation times, the nanosphere is far from
thermal equilibrium when the ramps finish.

With the acquired position, velocity and force data,
the DFT is ready to be tested. The DFT in Eq. 1 can be

rewritten in the position coordinate as, PR(−W,x2→x1)
PF (W,x1→x2) =

PR(x2→x1)
PF (x1→x2)

PR(−W |x2→x1)
PF (W |x1→x2) [20]. Here PF (x1 → x2) is the

probability of having a forward trajectory going from
x1 to x2, and PR(x2 → x1) is the probability of a re-
verse trajectory going from x2 to x1. These quantities
can be calculated using the distributions illustrated in
the Fig. 1B. They are essentially equivalent to the num-
ber of forward (reverse) trajectories going from x1 to
x2 ( x2 to x1). PF (W |x1 → x2) is the probability of

performing work W for those forward trajectories go-
ing from x1 to x2, and PR(−W |x2 → x1) is the reverse
probability (Fig. 3D). Similarly, Fig. 3E shows examples
of PF (W |v1 → v2) and PR(−W |−v2 → −v1) in the ve-
locity coordinate. The minus sign (−) in the velocity
space is due to the time reversal symmetry of the re-
verse process. Here irreversible work is calculated as
W = −

∑n−1
i=1 (fi+1 − fi)(xi + xi+1)/2 for n successive

position and force measurements. This formula is ob-
tained using the Hamiltonian, H = 1

2kx
2 − fx + 1

2mv
2,

and the work definition W =
∫ τ

0
dtḟ(t)∂H∂f during a ramp

period τ [2].

The DFT is tested in detail using 121 different initial-
final combinations in the position and velocity coor-
dinates uniformly distributed in (±σx,±σv). Fig. 3F

shows that the left hand side, PR(−W,x2→x1)
PF (W,x1→x2) , agrees well

with the right hand side, e−β(W−∆F ), of the DFT in
Eq. 1. Here e−β(W−∆F ) is a function of the work vari-
able W . The free energy difference can be calculated as
∆F = −1.3 kBT with foff/fon = 0/340 fN (Fig. 3A).
Similarly, we can verify the DFT in the velocity coordi-
nate (Fig. 3G). Data points also distribute closely to the
curves e−β(W−∆F ). Thus our data agree with the DFT
well in position and velocity coordinates simultaneously.
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FIG. 4. Testing fluctuation theorems in the underdamped
regime. A, B, Testing GJE in position and velocity spaces
for a fast ramp (red, 4.6 µs from 10% to 90% levels), and
a slow ramp (blue, 40 µs from 10% to 90% levels). Mark-
ers represent the measured PR(xf = x)/PF (xi = x) and
PR(vf = −v)/PF (vi = v) in position and velocity spaces,
respectively. C, D, Testing HSR in position and velocity
spaces for a fast ramp (red) and a slow ramp (blue). Mark-
ers represent the measured PR(xi = x)/PF (xf = x) and
PR(vi = −v)/PF (vf = v) in position and velocity spaces, re-
spectively. The errorbars of PR(x)/PF (x) and PR(−v)/PF (v)
represent the standard deviation of the measurements for 20
equal divisions in each subset x and v, respectively. The
markers represent their mean values. In A–D, the shaded
line represent 〈e−β(W−∆F )〉, where its thickness represents the
uncertainty of 600 work (Joule) calibrations.

Our experimental data can also test other fluctuation
theorems which are direct integrations of the DFT [30].
Integrating the Eq. 1 over W and b, we obtain the GJE
for delta initial distributions in the position or velocity
coordinates (a = x or a = v) [19, 24, 31],

〈e−β(W−∆F )|xi = x〉F = PR(xf = x)/PF (xi = x),

〈e−β(W−∆F )|vi = v〉F = PR(vf = −v)/PF (vi = v).(2)

Here PF (xi = x) is the probability that a forward trajec-
tory initializes at x, and PR(xf = x) is the probability
that a reverse trajectory finalizes at x. We use subscripts
“i” and “f” to denote “initial” and “final” respectively.
Similarly, PF (vi = v) and PR(vf = −v) are the probabil-
ities in the velocity coordinate. They are proportional to
the number of trajectories initialized (finalized) at x or
v (Fig. 2A). The value 〈e−β(W−∆F )|xi = x (or vi = v)〉F
is averaged over all forward trajectories initialized at
x or v in the position or velocity coordinates. The
data agree well with the GJE as shown in Fig. 4A,B.
For slow ramps, the measured 〈e−β(W−∆F )|xi (or vi)〉F
stays closely to 1, which is the result of a reversible pro-
cess. However, for fast (irreversible) ramps, the values
of 〈e−β(W−∆F )|xi (or vi)〉F diverge away from 1, so the
GJE is needed to explain our observations.

Initial Thermal P-shaped Uniform Microcanonical

state equilibrium state distribution ensemble

(Fig. 2B) (Fig. 2C) (Fig. 2D)

lhs 1.02±0.02 0.92±0.02 1.42±0.03 1.08±0.02

rhs 1 0.90 1.42 1.07

TABLE I. Test of the GJE for arbitrary initial states. The
thermal equilibrium state and three representative nonequi-
librium initial states shown in Fig. 2B, 2C, 2D are chosen for
the test. The second and third rows show the data of the lhs
and rhs of Eq. 4 for each initial state, respectively.

Similarly, integrating Eq. 1 over W and a leads to the
HSR [30] in the position and velocity spaces (b = x or
b = v) [6, 19, 20],

〈e−β(W−∆F )|xf = x〉F = PR(xi = x)/PF (xf = x),

〈e−β(W−∆F )|vf = v〉F = PR(vi = −v)/PF (vf = v).(3)

Here 〈e−β(W−∆F )|xf = x (or vf = v)〉F , PF (xf = x),
and PR(xi = x) are denoted using the same conventions
as in the GJE in Eq. 2. The data agree well with the HSR
for both fast (irreversible) ramps and slow (reversible)
ramps as shown in Fig. 4C,D.

Integraging Eq. 2 over initial phase space points with
an arbitrary initial distribution, one obtains the GJE for
arbitrary initial states proposed in Ref. [24]〈

e−β(W−∆F )
〉
Pini(xi,vi)

=∫
PR(xf = x, vf = −v)

PF (xi = x, vi = v)
Pini(xi = x, vi = v)dxdv,

(4)

where Pini(xi, vi) indicates an arbitrary initial distribu-
tion in phase space. We test Eq. 4 for the thermal equi-
librium initial state and three representative nonequilib-
rium initial states as shown in Fig. 2B, 2C, 2D. The re-
sults are shown in TABLE I. The left hand side (lhs) and
right hand side (rhs) of Eq. 4 agree well with each other
within the experimental uncertainty.

With our experimental data we can test JE [2] and
CFT [4] with high precision. The results are shown in
Fig. S2 in the supplemental material [30]. For complete-
ness, we also tested the DFT in the overdamped regime
(a = x1 and b = x2) where the velocity relaxes to equi-
librium much faster than other processes. As shown in
Fig. S3 in the supplemental material [30], our experimen-
tal data show good agreements with HSR [6], the DFT
[20], and the GJE [19, 24]. Overall, the differential fluc-
tuation theorem unifies many existing fluctuation theo-
rems [9, 10, 18, 24, 31, 32, 37], such as JE, CFT, HSR,
GJE, EFR, and FTLB, and is arguably the most detailed
fluctuation theorem that can be tested experimentally.
The DFT can also improve free energy calculations [20].
Our experimental results validate the DFT [20] well in
both underdamped and overdamped regimes. Our work
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deepens our understanding of the second law to an un-
precedentedly detailed level. It initiates the experimental
study of stochastic thermodynamics with instantaneous
velocity measurements, and may shed new light on our
understanding of the origin of time’s arrow [34]. Once
cooled to the quantum regime, a levitated nanosphere
in vacuum can be used to investigate quantum nonequi-
librium thermodynamics in the mesoscopic regime [39].
This system can also be used to study effects of geometry
in thermodynamic control [40].
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