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We introduce a general model for a network of quantum sensors, and we use this model to consider
the question: When can entanglement between the sensors, and/or global measurements, enhance
the precision with which the network can measure a set of unknown parameters? We rigorously
answer this question by presenting precise theorems proving that for a broad class of problems there
is, at most, a very limited intrinsic advantage to using entangled states or global measurements.
Moreover, for many estimation problems separable states and local measurements are optimal, and
can achieve the ultimate quantum limit on the estimation uncertainty. This immediately implies
that there are broad conditions under which simultaneous estimation of multiple parameters cannot
outperform individual, independent estimations. Our results apply to any situation in which spa-
tially localized sensors are unitarily encoded with independent parameters, such as when estimating
multiple linear or non-linear optical phase shifts in quantum imaging, or when mapping out the
spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors
can enhance the estimation precision when the parameters of interest are global properties of the

entire network.

Quantum networks are central to a growing number
of quantum information technologies, including quan-
tum computation [1, 2] and cryptography [3, 4]. Many
important metrology problems can be framed in terms
of networks, including mapping magnetic fields [5-9],
phase imaging [10-16] and global frequency standards
[17]. However, there is no general consensus on whether
entanglement within a network of sensors can enhance
the precision to which the network can measure a set
of unknown parameters: entanglement provides signifi-
cant enhancements in some cases [17, 18] but not oth-
ers [14, 19]. Given the immense challenges faced in the
creation and manipulation of entangled states, develop-
ing a complete understanding of when such resources
are advantageous for multi-parameter estimation is of
paramount importance.

In this letter we introduce and analyze a general model
that encompasses a wide range of those quantum multi-
parameter estimation (MPE) problems that might nat-
urally be termed a “quantum sensing network” (QSN).
Our QSN model (Fig. 1) includes any situation in which
spatially or temporally localized sensors are encoded with
independent parameters. Hence, our results have direct
implications for multi-mode linear [10-16] or non-linear
[11] optical phase shift estimation for quantum imaging,
mapping unknown spatially or temporally changing fields
[5-9], estimating many-qubit Hamiltonians [18], and net-
works comprised of clocks [17], BECs [20], interferome-
ters [14], or hybrid elements [21]. Beyond these exam-
ples, any situation in which independent parameters are
unitarily imprinted on different quantum subsystems fits
into our model.

Using our model we show that, if the generators of
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FIG. 1. A network of quantum sensors. The k" node rep-
resents a “sensor” into which the vector parameter ¢y is
encoded via a local unitary evolution. The connections be-
tween the nodes denote that, in general, the sensors can be
entangled, and/or global measurements can be performed.

all of the unknown parameters commute, no fundamen-
tal precision enhancement can be achieved by entangling
the sensors or by performing global measurements. In
this case, states that are separable between the sensors
— which are often easier to prepare experimentally — can
achieve the ultimate quantum limit. We then look at
the case of non-commuting parameter generators; here
we demonstrate that entanglement between sensors can
at most enhance the estimation precision by a factor of
two. We conclude by showing that entangling the sensors
can significantly enhance the precision when estimating
global parameters, such as the average of all the unknown
parameters in the network [17].

Whenever a protocol employs entangled resources it
is fundamentally indivisible into separate, independent
estimations at each location: it is intrinsically a simul-
taneous [9-16, 22] estimation method. As such, our re-
sults directly imply that there are broad conditions un-
der which simultaneous estimation cannot outperform a
strategy that estimates each parameter individually, con-
clusively proving that enhancements from simultaneous



estimation [9-13, 16, 22] are not generic.

Multi-parameter estimation (MPE) — Consider a
quantum system with Hilbert space H, and let Z(H)
and .# (M) denote the space of density operators and
positive-operator valued measures (POVMs) on H, re-
spectively. We will use the standard framework for a
quantum metrology protocol [23—-25]: An experimenter
picks some p € Z(H) and M € #(H) and implements
w repeats of: 1) prepare p; ii) let p evolve to py = U¢pUJ)
where Uy is a unitary that depends on d unknown param-
eters ¢ = (¢, da,...,pq)7; iii) apply the measurement
M to pg. An estimate of ¢ is then calculated from ex-
perimental outcomes using an estimator ®.

A common measure of the estimation uncertainty is the
covariance matrix Cov(®) = E[(® — E[®]) (& — E[®])"],
where E[-] is the expected value. For any unbiased esti-
mator, the quantum Cramér-Rao bound (QCRB) states
that Cov(®) > (Fu)~! [26-30], where F is the quan-
tum Fisher information matriz (QFIM) for pg, defined
by Fi = Tl"[p¢f/ki4 + p¢f/l£k]/2 with f/k solving
dpg/d¢n = (pe Lk + Lipg)/2 [26-30]. Note that for ma-
trices A and B, A > B denotes that A — B is positive
semi-definite. For d = 1 and any pg there is always a
measurement and an estimator that saturate the QCRB
as u — 0o [29, 31, 32], but for d > 1 this is not generally
true [26, 28, 33-37]. Some elements of ¢ may be of more
interest than others, so we introduce a d x d diagonal
weighting matriz, W, with W > 0, and define the scalar
quantity Eg := Tr(WCov(®)) [26, 38, 39]. Throughout
this letter, Fg is the figure of merit to minimize. The
QCRB implies that Eg > }sz Wik [F~ w-

Quantum sensing networks — In this letter we con-
sider a particular class of quantum MPE problems: quan-
tum sensing networks (QSNs). A QSN is, by definition,
any estimation problem in which we have s quantum sys-
tems, which we will call “quantum sensors”, and there
are d unknown parameters with each parameter unitar-
ily encoded into one and only one of the sensors. It is
natural to refer to this model as a QSN because any set
of spatially distributed quantum systems that are each
“sensing” some locally unitarily encoded parameters is a
QSN (although some systems without this spatial struc-
ture also fit into this framework).

Our model, illustrated in Fig. 1, encompasses many
metrology problems in the literature [5-18, 20, 21] (see
examples later). More formally, a QSN is any MPE
problem in which the total Hilbert space H may be
decomposed as H = H; ® --- ® H, for some {Hy},
and the unitary evolution may be decomposed as Uy =
Ur(¢) ® Ua(@pg) @ - ® Us(eyy), where ¢y denotes
the dg-dimensional sub-vector of ¢ encoded onto the
k'™ sensor by the unitary U, with Yopde = d. Let
by = (01,5 0a)"s Do) = (Par1, -+ Py ) et

Often we wish to compare probe states p that con-
tain the same quantity of “resources” R(p), for some

R : 9(H) — R>o. There is no universally applicable def-
inition for the resources within a state; we will consider
functions of the form R(p) = Tr[(Ry + Ra+---+ Rs)(p)],
where Ry, is any Hermitian operator acting non-trivially
only on sensor k and satisfying R(ps) = R(p) (so re-
sources are conserved under the evolution). This includes
the resource counting in most standard metrology prob-
lems. E.g., in optical metrology with s modes the total
average number of photons is the standard resource [10-
15], given by Ry, = Ny, where ny is the number operator
on mode k (which commutes with the standard parame-
ter generator, 7). In atomic sensing, the resource is nor-
mally the total number of atoms [40-43]. This is obtained
by taking the Hilbert space of each sensor to be the direct
sum of the n-atoms Hilbert space for n =0,1,2,..., and
Ry, to be the atom-counting operator, which commutes
with all atom-number conserving Hamiltonians.

QSNs with commuting parameter generators —
The generator of ¢y, is defined by Hj, := —i(aU;/am)Ud,
[44, 45]. Our main results are separated into two cases:
when the generators all commute, and when they do not.
First, consider any QSN in which the generators all com-
mute. Informally, our first result is that for any such es-
timation problem sensor-separable states can enable an
estimation uncertainty that is at least as small as can be
achieved with sensor-entangled states. This also implies
that, in this setting, simultaneous estimation provides no
intrinsic advantage over individual estimation; the latter
can achieve the ultimate quantum limit. We now state
this precisely:

Theorem 1. Consider any QSN in which [Hy, H] = 0
for all k,1 and where we wish to minimize Eg where
Eg = Tr(WCov(®)) for some specified W. For any es-
timator, probe p and measurement M,, there exists an
estimator, a probe ¢ and a measurement M, for which

1. ¢ is separable between sensors.
2. R(¢) < R(p).

3. M, is implementable by independent measure-
ments of each sensor.

4. Es(p, M,) < Ea&(p,M,) in the asymptotic p
limit.

Proof. This may be proven by constructing such a ¢ and
M, for arbitrary p and M,. First consider pure p, i.e.,
p =1 = |[¢){¢h]. We now find a mapping from 9 to a
state ¢ that satisfies conditions 1 and 2, and that has
an equal or smaller QCRB on Fg. Consider the state
) = @)1 (S, 1WA [1A6)), where {[Ac)} s a set of
orthonormal mutual eigenstates of the generators for all
of the parameters encoded into sensor k. By construc-
tion, ¢ and ¢ have the same statistics for any operator
that is diagonal in the eigenbasis of the generators, and



@ is separable between sensors. As the resource opera-
tor commutes with Uy, it commutes with the parameter
generators, implying ¢ satisfies conditions 1 and 2.

For a pure state and commuting generators Fy; =
A((HpH)) — (Hp)(H,)) 9, 12, 14]. Using this we find
that ¢ and ¢ have the same block-diagonal QFIM el-
ements, where the block diagonals are the sub-QFIMs
for each ¢[k], denoted Fxy), and ¢ has a block-diagonal
QFIM (¢ in general does not). Now for any QFIM
[F~ k) = [Fewg] ™", with saturation only for a block-
diagonal QFIM (see the Supplemental Material [46]),
and hence the diagonal elements of the inverse QFIM
of ¢ are all smaller than or equal to those of ¥. Using
Eg > izl Wyu[F i, and noting that when the gen-
erators commute there always exists a measurement and
estimator that asymptotically saturate the QCRB [27],
we see that condition 4 is satisfied by some measurement
and estimator. It only remains to show that for one such
measurement condition 3 holds, and for every mixed state
p, there exists a pure state with equal or lower Fg and
the same resources. We prove this in the Supplemental
Material [46]. O

Theorem 1 has practical implications for a range of im-
portant estimation problems. For example, consider es-
timating a set of d optical phases encoded into d modes
(defined with respect to a classical phase reference [47]).
Theorem 1 implies that, for any mode-entangled state
and measurement, there is a mode-separable state and
measurement (acting on only that mode and a local
phase reference) that provides an equal or lower estima-
tion uncertainty, for the same average number of pho-
tons through the d phase shifts. So, although highly
mode-entangled states can provide high estimation preci-
sion [10-12, 16], this entanglement is not necessary. This
supersedes the results of Ref. [14], which apply only to
mode-symmetric states.

Importantly, Theorem 1 is only directly applicable
when the set of states, from which we wish to find the best
p, is the set of all density operatorson H = H1®- - -QH.s.
Hence, if we restrict the allowed p to S C 2(#H), Theorem
1 is only applicable if S contains all p on some smaller
Hilbert space H’ that still factorizes. This is not the case
for some global constraints on the state. This reconciles
our theorem with Humphreys et al. [10], who show that
highly-entangled “generalized NOON states” provide a
precision enhancement over individual estimation strate-
gies, for the d-optical-phases problem, when only states
with definite total photon number are considered.

Interestingly, Theorem 1 may be extended to further
classes of S. This includes any S containing pure states
whereby every state in S can be mapped to a sensor-
separable state in S with the same measurement statistics
for operators diagonal in the eigenbasis of the generators
(the proof is a trivial adaption of that given above). This
implies that, if considering only Gaussian optical states

in the d-phases problem, entanglement cannot reduce the
estimation uncertainty. As such, our theorem strength-
ens and complements the results of Ref. [15].

Theorem 1 may also be applied to other important
metrology scenarios: It implies that the estimation of
non-linear optical phase shifts on many modes [11] does
not benefit from mode-entanglement, and in a network
of clocks [17], if each clock is used for local timekeeping
then entangling the clocks will not enhance the precision.
A magnetic field sensing problem is considered later.

QSNs with non-commuting parameter generators
— There are a variety of important estimation problems
for which the generators do not commute [9, 48, 49], such
as estimating the three spatial components of a magnetic
field [9], or estimating completely unknown unitaries [49].
We now adapt Theorem 1 to the case of non-commuting
parameter generators.

Consider an arbitrary QSN with some non-commuting
parameter generators. In our model, the generators of pa-
rameters imprinted on different sensors always commute,
so only the generators of parameters encoded into the
same sensor can be non-commuting. When estimating
parameters with non-commuting generators, it is known
that the optimal estimation protocol will generally re-
quire a probe that is entangled with an ancilla [48, 49].
In a QSN, other sensors in the network can potentially
play a similar role to ancillas, and so sensor-entanglement
might reduce estimation uncertainty. However, any en-
hancement in the estimation precision gained from entan-
glement between sensors can instead be obtained by en-
tangling each sensor with a local ancilla. The cost of this
is that resources can be consumed by the ancillary sys-
tem; twice the resources might be required to obtain the
same estimation precision without sensor-entanglement.
We can state this precisely in the following theorem:

Theorem 2. Consider any QSN in which we wish to
minimize Eg. For any estimator, probe state p € D(H)
and measurement M, € M (H), there exists an esti-
mator, probe ¢ € P(H @ H) and measurement M, €
AM(H Q@ H) for which

1. ¢ is separable between sensors, but each sensors can
be entangled with a local ancilla.

2. R(p) < 2R(p).

3. M, is implementable by independent measure-
ments of each sensor.

4. Es(p, My,) < Eg(p,M,) in the asymptotic
limit.

A complete proof is provided in the Supplemental Ma-
terial [46] (it closely follows the proof of Theorem 1).
Note that condition 2 in this theorem depends on how
resources used in ancillary sensors are counted, and here
we have counted resources in the ancillas and sensors



equally. If ancillas are considered cost-free then condi-
tion 2 improves to R(¢) < R(p). Whether entanglement
with a local ancilla is practically plausible is application
dependent. Theorem 2 can be applied to a range of prac-
tical QSN problems. For example, if we wish to char-
acterize a multi-dimensional field at multiple locations,
then entanglement between atomic sensors at these loca-
tions can provide no improvement in precision compared
to entangling these atoms with some local ancillary sys-
tem (which may contribute to total resources used). This
complements the results of Ref. [9], which provides strate-
gies for single-site estimation of multi-dimensional fields.

Estimating global functions of ¢ — In some sensing
problems it may not be necessary to estimate ¢. Instead,
the parameter(s) of interest could be some function(s) of
¢, e.g., >, ¢r. In this case, the aim is to optimize the
QSN for estimating these functions, and this encompasses
many important problems, including measuring: phase
differences in one [50] or more [14] interferometers; the
average or sum of many parameters [17]; a linear gradient
[51, 52]. A global property of the network is some vec-
tor (or scalar) with elements that are functions of {¢}
depending non-trivially on many or all of the ¢, which
includes the examples given above. We now show that
the optimal protocol for estimating global properties of
a QSN often requires sensor-entangled states.

For simplicity, we consider estimating a single lin-

ear function of ¢; # = v'¢ for some v € RL To
fix arbitrary constants, let ||v||z = 1 and v, > 0 VEk
([vllp = > |vk[P]/P). Moreover, consider a QSN con-

sisting of < N particles (e.g., atoms or photons) dis-
tributed over d sensors, with ¢; encoded into sensor
k. We take the parameter generators to all be identi-
cal (except that they act on different sensors), with the
maximal and minimal eigenvalues of the generator for
< n particles in a sensor, Amax,n and Amin n, satisfying
Amax,n — Amin,n = KN for some constant £ > 0. Denote
corresponding orthonormal eigenvectors by |[Amax,n) and
[Amin,n). Examples that fit into this setting include esti-
mating a function of many linear optical phase shifts, or
of a spatially varying 1-dimensional magnetic field with
multi-level atoms, or qubits [18].

Although we only wish to estimate 6, there are many
unknown parameters. Hence, to bound Var(©) =
E[©?%] —E[O]? (O is the estimate of §) requires the QCRB
on @ = (0,03,...)T = M¢ for some matrix M with
(M¢@); = 0. We may take M to be orthogonal, as only
the first row of M is specified by the problem. The rele-
vant QFIM is then F(0) = MF(¢)MT [29].

The optimal n-particle state of sensor k for estimat-
ing ¢ iS X [Aminn) + |Amaxn), SO the optimal N-
particle QSN sensor-separable state for estimating 6 is
X (| Amingwy ) + \)\max,wk»@d optimized over w € N¢ with
|lw|ls = N. By calculating the QFIM of this w-optimized
state, for any pure and sensor-separable state we have

4

Var(©) > [[v]2,/(ux2N?) > [oll1/(ur2N2), where
is the number of experimental repeats. Now, assum-
ing that vy/||v]|1 is rational and that N is such that
U = Nug/||v||1 is an integer Vk, consider the sensor-
entangled GHZ-like state

% <|)\max,ﬁk>®d + |)\min,ﬂk>®d) . (1)
The QFIM for this state is F(¢p) = k> N2vv™ /||v||3, and
hence F(0)11 = x2N?/||v||? with all other matrix ele-
ments zero. This QFIM is singular, but the state depends
on 6, so the saturable QCRB for this state is given by
Var(0) > 1/(uF(0)11) = [[vl[3/ (12 N?).

As ||v]|2 = 1, for all non-trivial v (i.e., v with mul-
tiple non-zero elements) ||v||; > 1. Hence, for all such
v entanglement between sensors reduces the estimation
uncertainty below what is obtainable with any sensor-
separable state. Moreover, |v||; is maximal when v
(1,1,...,1), and so the precision enhancement is largest
when estimating the average or sum of all d parameters.
In this setting, the reduction in the estimation variance
is a factor of 1/d (as then [[v[[}/|v]3,5 = 1/d).

To illustrate these results, we now apply them to a
simple — but practically relevant — example: estimating
the difference between the magnetic field strength at two
locations with N qubits (i.e., gradient estimation). Con-
sider estimating 6 = (¢o — ¢1)/V/2 with ¢y, for k = 1,2
generated by JAzyk = %Z] 02k, on sensor k, which con-
sists of ny, qubits for ny + ny = N, where o0, ; is the
0, operator on qubit j in sensor k. Our results imply
that a global GHZ-like state oc [L)"" [1)™ + [1)™ 1)
with ny = ny = N/2 has an uncertainty reduction of
1/2 compared to any sensor-separable state. However, if
we instead wish to estimate ¢1 and ¢o (or ¢ — ¢1 and
¢2 + ¢1), then the above state is not appropriate, as it is
sensitive only to ¢ — ¢1. In this case, Theorem 1 implies
that the optimal probe state is separable between the
atoms at the two sites (the optimal state is then a local
GHZ-like state at each site). Importantly, note that these
conclusions do not necessarily hold if ¢; and ¢2 have a
known dependence: the extreme case is when we know
that ¢1 = ¢, in which case estimating ¢ = ¢; = ¢9 is a
well-known one-parameter problem, and a global GHZ is
optimal [41, 53]. This example can be directly adapted
to Il-level atoms, > 2 sensors, and more general linear
functions.

Recently, Ge et al. [54] have applied our results to the
estimation of a function of d linear phase shifts, and they
have shown how to obtain the O(d) precision enhance-
ment, derived above, by entangling photons using a linear
optical network. These interesting results show that the
O(d) enhancement proven here is potentially obtainable
with current technology.

W)an,v) =

Conclusions: Quantum metrology is a powerful emerg-
ing technology, but while many practical problems un-
avoidably involve more than one unknown parameter,



the critical resources for obtaining the ultimate quan-
tum limit in multi-parameter estimation (MPE) are not
yet well-understood. In this setting, simultaneous esti-
mation, entanglement between sensors, and global mea-
surements are possible avenues for improving estimation
precision that are not relevant in the single-parameter
scenario [9-13, 16, 22].

In this letter we considered a broad class of practi-
cally important MPE problems: quantum sensing net-
works, meaning any setting in which the unknowns pa-
rameters can be sub-divided into distinct sets each asso-
ciated with one spatially or temporally localized sensor.
We have presented a general model for such estimation
problems, and we stated precise theorems that show that
simultaneous estimation, entanglement between sensors,
and global measurements are broadly not fundamentally
useful resources for minimizing estimation uncertainty in
this setting. The important exception to this is when one
or more global properties of the network are the parame-
ters of interest, e.g., if only the average of all the param-
eters is to be estimated. In this case we have shown that
entangled states and measurements can, in general, im-
prove estimation precision. In doing so, we have shown
that GHZ-like states have a particularly high precision
for estimating generic linear functions in a practically
relevant class of QSNs, including in optical and atomic
sensing networks.

These results provide a rigorous foundation for under-
standing the role of entanglement and simultaneous esti-
mation in optimal MPE, and they definitively show that
these resources are not critical in a broad class of impor-
tant problems. We anticipate that this letter will prove
helpful for guiding the development of sensing technolo-
gies for multi-parameter metrology in fields as diverse
as optical imaging [10-16], field mapping with atoms [5—
9], and sensor networks comprised of BECs [20], clocks
[17], or interferometers [14]. Moreover, recently these
results been applied to the interesting problem of esti-
mating functions of linear optical phases [54].
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