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Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-
state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility
also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics
are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore
and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled
virus stalls and this reduces the total viscous drag force. We present a scaling theory which connects
the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.

The buckling of a column under compression occurs in
systems that span an enormous range of scales, from rail
tracks and pipelines [1, 2] down to the microtubules in a
living cell [3–5]. The mechanical buckling instability, first
elucidated by Euler, arises from a competition between
elasticity and compressive stress [6]. Elasticity tends to
restore a bent rod to its linear, equilibrium conformation,
whereas a compressive stress applied along the rod’s axis
exacerbates departures from linearity. An instability sets
in when the compressive stress grows too large or the rod
grows too long for the rod’s elasticity to counteract the
growth of deformations, and the rod buckles sideways.
Here, we report measurements and Langevin dynamics
(LD) simulations that reveal the buckling of filamentous
viruses as they translocate a voltage-biased nanopore due
to the viscous drag forces that compress the leading part
of the polymer as it emerges from the nanopore. Buckling
profoundly affects the translocation dynamics, giving rise
to a nonlinear electrophoretic mobility and a nontrivial
dependence on the virus length. A scaling theory cap-
tures these new dynamical effects.

A nanopore is a nanometer-scale hole in a thin mem-
brane that can detect translocations by large polyelec-
trolytes like DNA or filamentous viruses. Nanopore tech-
nology is being developed for bioanalysis applications,
notably DNA sequencing [7]. A voltage ∆V applied be-
tween fluid reservoirs on either side of a nanopore drives
the polyelectrolyte from the cis side to the trans side,
as illustrated in Fig. 1. The voltage also drives an ionic
current I whose disruption signals the polymer’s presence
inside the nanopore [8, 9]. The force driving the polymer
is exerted mainly on the part inside the nanopore [10, 11],
and that localized force is balanced by viscous drag forces
that are distributed unevenly over the entire polymer.
The forces generate tension in the part of the polymer on
the cis side and compression on the trans side. For long
DNA molecules, the tension and its propagation through
the coil on the cis side give the mean translocation ve-
locity a nontrivial length-dependence [12–18] and cause
large velocity fluctuations [19–21]. The behavior of the
trans portion of the polymer has so far been neglected; it
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FIG. 1. Simulated virus configurations near the end of
nanopore translocations with λ=1 (green polymer) and λ=3
(buckled red and blue polymers). Inset: I trace measured
during an fd translocation of a 29 nm diameter nanopore.

is generally assumed that the part that has translocated
has little effect.

Our studies of the filamentous viruses fd and Y21M
challenge that view. The high stiffness of those viruses
compels most of their length to move at the translocation
speed, which generates large viscous drag forces outside
the nanopore. We have discovered a direct connection
between the occurrence of buckled configurations of the
polymer on the trans side and nonlinear dynamical be-
havior. Previously, only a linear dependence of the mean
translocation speed v on ∆V has been measured [22–25]
or predicted theoretically [26, 27].

We measured virus translocations through solid-state
nanopores as described in Ref. [24]. Briefly, a nanopore
drilled through a 20 nm-thin silicon nitride membrane on
a silicon chip connected two reservoirs containing aque-
ous 200 mM KCl, 10 mM Tris, 1 mM EDTA solution at
pH 8. We applied ∆V and measured I using a cur-
rent amplifier attached to Ag/AgCl electrodes immersed
in the reservoirs. I was low pass filtered at 50 kHz,
which gave sufficient bandwidth to resolve the shortest
translocation durations relevant to this study. Filamen-
tous viruses were grown using Xl1-Blue as the host E.
coli strain [28]. The purified fd viruses, whose length is
L=0.88µm and persistence length is P = 2.8 µm, also in-
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clude small percentages of dimers and trimers, which are
2 and 3 times the length of fd, respectively. Those dimers
and trimers enabled us to study the length dependence
of the virus translocations. We also studied Y21M, a mu-
tant of fd with the same length and charge density but
a longer persistence length, P = 9.9 µm. The viruses,
which are negatively charged, were electrophoretically
drawn through the nanopore, causing transient block-
ages in I, an example of which appears in Fig. 1. We
determined the duration τ and the amplitude 〈∆I〉 of
each blockage from a least-squares fit of a square pulse.
We obtained the mean translocation speed v by fitting a
first passage time function to distributions of τ (see Sup-
plemental Material, which contains Refs. [29–32] ). We
discarded signals caused by side-on collisions of the virus
with the nanopore, which were easily identified by their
low 〈∆I〉 and short τ [24].

We also performed LD simulations that enable us to
visualize polymer configurations, instead of merely infer-
ring them from the translocation dynamics. A polymer
was comprised of N monomers linked by a finitely exten-
sible nonlinear elastic potential [33, 34]. The excluded
volume was given by the Weeks-Chandler-Anderson po-
tential [35] and the polymer stiffness imposed by a har-
monic bending potential tuned to match the stiffness of
fd. A polymer with N=133 has the same aspect ratio
as fd. Lu et al. calculated that the electrokinetic force
on a monomer depends on its radial position r inside a
cylindrical nanopore [36]; as a polyelectrolyte approaches
the nanopore wall, the changes in the electroosmotic flow
profile increase the driving force [36]. We used the theo-
retically predicted force profile, F (r) (see Supplemental
Material), and localized it inside the nanopore (i.e. it was
zero outside). We multiplied F (r) by a scaling factor λ to
adjust the magnitude of the force. We can convert λ into
experimental ∆V values by matching the Peclet numbers
of simulated and measured polymers (see refs. [24, 37]).

Figure 2(a) shows the dependence of v on ∆V for fd
translocations of a 19 nm diameter nanopore and for
both fd and Y21M translocations of a 22 nm diameter
nanopore. fd translocations were measured with ∆V as
high as 400 mV in an effort to probe the limits of the lin-
ear mobility regime; it was important to work with very
dilute fd suspensions in order to avoid the nanopore clog-
ging at the highest voltages. v grew superlinearly with
∆V in all cases. The dependence was slightly more su-
perlinear for fd than for the stiffer Y21M mutant, which
indicates a role for the viruses’ mechanical properties in
shaping the translocation dynamics. The inset of Fig. 2
plots the dependence of v on ∆V for translocations of a 29
nm diameter nanopore by fd, fd dimers, and fd trimers.
The dimers and trimers appear to depart from linearity
at lower voltages than the monomers, but the measure-
ments show too much uncertainty to establish a length
dependence. The mobility of fd varied modestly between
the three nanopores, which could be explained by the
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FIG. 2. (a) v vs. ∆V for translocations of nanopores with di-
ameters of 19 nm (black) and 22 nm (red) by fd virus (circles)
and the stiffer Y21M mutant (squares). Inset: v vs. ∆V for fd
(circles), fd dimers (diamonds), and fd trimers (triangles) in
a 29 nm diameter nanopore. (b) v vs. λ for simulated translo-
cations by filaments of stiffness comparable to fd (circles) and
Y21M (squares). Solid lines represent the scaling theory pre-
sented in the main text. Dashed lines show extrapolations of
the linear mobility regime.

diameter-dependence of the electrokinetic driving force
and drag coefficient [11], and possibly also by differences
in the surface charge of the nanopores [24].

The simulated polymers exhibited a similar superlin-
ear rise in v with λ, seen in Fig. 2(b), which was more
pronounced for a polymer whose stiffness matched that
of fd than for a polymer matching Y21M.

Figure 3 shows the decreasing average mobility of fd,
v∆V −1, with L for translocations of a 29 nm diame-
ter nanopore for four different values of ∆V . The L-
dependence grew weaker as ∆V increased. Simulations
similarly found that the average mobility decreased with
N at a rate that decreased with increasing λ (Fig. 3).

Figure 4(a) plots the evolution of the instantaneous
mobility (whose calculation is detailed in the Supplemen-
tal Material) of a simulated polymer over the course of
translocations for various N and λ. The data are nor-
malized by the mobility of a rigid rod in bulk solution
in order to factor out the trivial N -dependence expected
from the Stokes drag. The mobility equals the bulk mo-
bility in the early part of translocations, then rises toward
the end, with the rise beginning earlier and bending more
sharply as λ increases. The mobility also rises earlier and
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FIG. 3. L-dependence of the average mobility in transloca-
tions of a 29 nm diameter nanopore by fd with ∆V=40, 55,
130, and 160 mV (black). Also plotted is the N -dependence of
the average mobility of simulated polymers (red) for λ = 0.5
and 2. Error bars are standard deviations found by bootstrap
resampling of the data.

more sharply as N increases.
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FIG. 4. (a) Evolution of the instantaneous filament mobility
during translocations by simulated polymers for various λ.
The inset plots the same dependence for N = 50, 100, 133,
200, and 266 with λ = 1. (b) Evolution of 〈dext〉 over the
course of simulated translocations for various λ. The inset
shows the dependence of L∗ on λ; the line is a power-law fit
to the high-λ behavior. (a) and (b) show λ = 0.5, 1, 2, 3, 4,
5, 6, 7 and 8, ordered as indicated.

The simulations provide clear evidence of buckling and
its connection to the nonlinear rise in v with ∆V . Fig-
ure 4(b) shows the evolution of the mean distance be-
tween the nanopore and the leading monomer of the virus
〈dext〉 as a function of the number of monomers that
have translocated the nanopore. The leading monomer
initially moves steadily away from the nanopore, with

〈dext〉 equal to the length of polymer that has translo-
cated. Eventually 〈dext〉 stalls, even as more monomers
pass through the nanopore. The stall signals the buck-
ling of the polymer. Figure 1 shows two typical buckled
configurations at λ = 3. Note that the onset of buck-
ling in Fig. 4(b) coincides with the onset of the accel-
eration observed in Fig. 4(a). The influence of buck-
ling on mobility was also observed within ensembles of
translocation events, as a polymer’s translocation time
increased with its end-to-end extension after the translo-
cation for fixed λ (see Supplementary Fig. 3). Buckling
leads to an acceleration of the translocation because each
monomer that stalls (or slows) experiences no (or less)
viscous force, so the driving force faces less resistance.
We also observed that buckled polymers consistently be-
come pinned, either against one side of the nanopore (e.g.
Fig. 1, blue polymer) or against both in a cross-pore
configuration (e.g. Fig. 1, red polymer), which further
accelerates the translocation because F (r) is highest at
the perimeter of the nanopore. Because our simulation
includes no polymer-pore interaction beyond excluded
volume, the pinning is a purely mechanical effect. The
critical distance at which buckling occurs decreases with
λ with a power law dependence L∗ ∝ λ−0.29 (inset of
Fig. 4(b)). For the lowest λ’s investigated, the polymer
did not buckle catastrophically. Our determination of
L∗ for λ ≤ 2 were inaccurate because of this absence of
strong buckling. To illustrate these observations, Supple-
mentary Videos show an N = 133 long polymer buckling
with λ = 6 but not λ = 1, and a shorter N = 50 polymer
avoiding buckling at both λ = 6 and λ = 1.

As a virus emerges from a nanopore, each segment on
the trans side must push the entire length of polymer in
front of it. The Stokes drag on a slender rod of length
L and radius a being pushed from behind to a velocity v
through a fluid of viscosity η is

Fv(L) =
2πηL

log (L/2a)
v (1)

(the small contribution to the total viscous drag from the
part of the virus that is inside the nanopore is neglected).
The compressive stress in the virus therefore increases
with distance from the leading tip. This is analogous to
the increasing compressive stress in a massive freestand-
ing column with distance from the top due to gravity.
Euler’s formula gives the critical length L∗ where the
self-buckling instability sets in

L∗ =

(
9
(
j1/3

)2
EI

4q

)1/3

, (2)

where E is the elastic modulus, I is the moment of in-
ertia, q is the force per unit length, and j1/3 ≈ 1.86635
is the first zero of the Bessel function of the first kind
of order 1/3 [38]. Combining eqs. 1 and 2 and using
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P = EI/kBT , we find (L∗)3

log(L∗/2a) ≈
1.247PkBT

ηv . Neglect-

ing the logarithmic length dependence and defining a crit-
ical translocation velocity vc beyond which the buckling
transition sets in for a rod of length L, we obtain

L∗

L
≈
(vc
v

)1/3
. (3)

Now we show how the nonlinear translocation dynam-
ics of viruses are a direct consequence of buckling. The
instantaneous translocation velocity ds/dt is determined
by the balance of forces ds

dt = F/ξ(s), where F is the
driving force and ξ(s) is the viscous drag coefficient of
the rod after a length s has translocated. The dynamics
are found by integrating over the translocation∫ L

0

ξ(s)ds =

∫ τ

0

Fdt, (4)

with τ the total translocation time. We take the viscous
drag on the virus before buckling to be ξ = γL, where γ
is the drag per unit length for a stiff rod. When the virus
buckles, the leading tip stalls and the average velocity of
the trans part becomes less than ds

dt . Buckling accelerates
the translocation because the buckled virus experiences
less viscous drag. We estimate the average velocity of the
virus between the nanopore and the leading tip to be αdsdt ,
with α ≈ 1

2 because the velocity must rise continuously

from 0 at the stalled tip to ds
dt at the nanopore. This

model of buckling leads to

ξ(s) = γL (s ≤ L∗);

= γ(L− s) + αγs (s > L∗).
(5)

The driving force on a virus is F0 before it buckles. Af-
ter buckling, the virus becomes pinned to the side of the
nanopore where the electrokinetic driving force becomes
F = βF0, taking for simplicity β ≈ 2 from the electroki-
netic model of F (r). While this increase in the driving
force after buckling is not needed to find nonlinear dy-
namics, it improves the quantitative predictions and it is
consistent with what we know about the viruses’ general
behavior from our simulations.

To find the relationship between ∆V and v, we first
integrate eq. 4, breaking the translocation into two in-
tervals, one before buckling (s ≤ L∗) and the other after
buckling (s > L∗), using the appropriate expressions for
F and ξ(s) in each. τ is the sum of the two intervals.
Next we use v = L/τ to eliminate τ , and eq. 3 to con-
vert the remaining L-dependence into a dependence on
v. Finally, we define ∆Vc to be the critical voltage for
buckling to occur in a polymer of length L and use the
fact that F0 ∝ ∆V to obtain

∆V = ∆Vc

(
v

vc

)(
A+B

(vc
v

)1/3
+ C

(vc
v

)2/3)
. (6)

A, B, and C are constants that depend on whether the
virus is shorter or longer than L∗. Below the buckling

threshold (L < L∗), A = 1 and B = C = 0. Above the
buckling threshold (L > L∗), A = 1

2β (α+ 1), B = 1− 1
β

and C = 1
2β (1− α).

Equation 6 describes the measured data in Fig. 2 quite
well. The model captures the superlinear rise in v with
∆V after an initial linear regime, as well as the slightly
slower rise for the stiffer polymer. Fitting eq. 6 using vc
and ∆Vc as free parameters, the fd measurements give
vc = 2.25 mm s−1 and ∆Vc = 85 mV (135 mV) for the 19
nm (22 nm) nanopore. The data rise more rapidly than
the model at high ∆V ; this could be explained by a larger
jump in the force experienced by a buckled polymer than
modeled (i.e. a larger β) or by a larger reduction in the
drag after buckling (i.e. a smaller α). For the simulation
data, the fits are excellent, and we found vc = 0.05 and
λc = 1.4 for fd, and vc = 0.055 and λc = 1.7 for Y21M.

The buckling model also explains the L- and ∆V -
dependence of the mobility plotted in Fig. 3. For a given
length of polymer, buckling occurs earlier in the translo-
cation as ∆V increases, which increases the average mo-
bility. Also, the scaling model predicts ∆Vc ∼ 1/L, so
longer polymers experience a relatively greater reduction
in drag, and their mobility grows more rapidly with ∆V .
Finally, the model predicts the high-λ dependence of L∗

shown in Fig. 4. Because the driving force is propor-
tional to v up until the buckling transition, eq. 3 leads to
L∗ ∝ λ−1/3, which is very close to the scaling L∗ ∝ λ−0.29

observed in the simulations.

Interestingly, the onset of buckling observed in translo-
cation experiments and simulations occurred at higher
forces and speeds than expected theoretically. Based on
eqs. 1 and 2 and the known mechanical properties of fd,
we estimated vc = 83 µm/s, which is about 27 times
smaller than the value we obtained from the dynamics in
Fig. 2. Similarly, we estimated vc = 0.0014 for the simu-
lated fd virus, which is about 35 times less than the value
we obtained from the dynamical simulations. We specu-
late that two neglected effects would explain this discrep-
ancy. The first is thermal fluctuations, which play a dual
role of nucleating bends that can lead to buckling while
also shedding stress by reducing curvature in bent sec-
tions. The second is the selection of fast buckling modes
by the short translocation time; only buckling modes that
are fast enough to distort the virus significantly before
the translocation ends will affect the dynamics.N These
complicated but interesting effects should be studied in
future work.

In conclusion, we discovered a connection between
the solid mechanics and the dynamics of filamentous
viruses translocating nanopores. The translocation ve-
locity grows nonlinearly with the driving force because
the filament’s leading part buckles as it emerges from
the nanopore. Nonlinear dynamics have neither been
predicted nor measured previously in the flexible poly-
mers or rigid rods. The filamentous virus dynam-
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ics we observed are a distinctive feature of the regime
where the polymer length is comparable with the per-
sistence length. We therefore expect buckling to occur
in nanopore measurements of DNA, and for it to have
a significant influence on the translocation dynamics of
molecules with a length comparable to 50 nm, which is
an experimentally relevant regime [39, 40].
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