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Confinement of a slender body into a granular array induces stress localization in the geometrically
nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular
medium. By varying the initial packing density of grains and the length of a confined elastica,
we identify the critical length necessary to induce jamming, and demonstrate how folds couple
with the granular medium to localize along grain boundaries. Above the jamming threshold, the
characteristic length of elastica deformation is shown to diverge in a manner that is coupled with
the motion and rearrangement of the grains, suggesting the ordering of the granular array governs
the deformation of the slender structure. However, over confinement of the elastica will vertically
dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate
coupling in elastogranular interactions.

PACS numbers: 45.70.-n, 46.32.+x, 62.20.mq

Consider the growth of an elastic rod within a granu-
lar medium. As the rod elongates in a confined space, it
will bend to minimize its internal energy [1, 2], reorder-
ing the surrounding granular material to accommodate
higher arc length configurations. At low packing den-
sities, the rod feels little resistance from the grains [3],
while as the packing density is gradually increased to the
point of jamming, the granular material begins to exert
a large, inhomogeneous stress distribution on the elastic
rod [4–8], deforming the geometrically nonlinear struc-
ture. It is well-known that slender structures will localize
stress in response to a homogeneous stress distribution.
Wrinkled sheets on a fluid substrate exhibit a sponta-
neous up–down symmetry breaking that tends toward
an asymptotic isometry [9–13], while wrinkled sheets on
an elastic substrate exhibit a period doubling instabil-
ity and subsequent up–down symmetry breaking charac-
terized by a subharmonic mode [14, 15]. The nonlinear
response of slender structures to inhomogeneous stress
distributions via coupling with discrete media is less well
understood, despite occurring frequently in the natural
world [16–18]. Stresses exerted by soil on a growing root
can dictate growth pathways [19–21] and induce chiral,
helical buckling [22–24]. Further, in dry sand environ-
ments, sand vipers can burrow [25], and desert–dwelling
sandfish can swim within a granular bed by propagating
an undulatory traveling wave down their rod–like bodies,
enabling non-inertial swimming [26].

These coupled, elastogranular mechanics have gener-
ally been considered as local inhomogeneities or studied
in systems where the length scale of elastic deformation
exceeds by several orders of magnitude the grain size.
The question of how granular ordering can influence de-
formation of a slender body, such as an elastica, has re-
mained open. In this Letter, we describe the connec-
tions between jamming, ordering, and stress localization
in an elastogranular system through the use of simple
scaling arguments, and the observation of the relaxation

FIG. 1. Shape profiles of the elastica as additional arc length
∆ is injected into a granular array of length L0, widthW0 over
a range of initial experimental packing fractions: φ0 = 0.1 (i),
φ0 = 0.55 (ii), φ0 ≈ φj = 0.835 (iii).

of stresses within the granular network through the ver-
tical dislodging of grains. These results will help to illu-
minate the ways slender elastic structures interact with
non-homogeneous and fragile media, behavior commonly
seen in plant root growth [24], the piercing of soft tis-
sue [27], and the reinforcement of jammed granular ar-
chitectures [28, 29].

To understand how the discrete, heterogenous behav-
ior of a granular medium couples with the nonlinear de-
formation of a slender continuum structure, we experi-
mentally considered the confinement of a planar elastica
within a 2D monolayer of soft, nearly frictionless spheri-
cal grains. Individual packings are prepared by randomly
populating both sides of an initially straight, undeformed
elastic beam, with N approximately monodisperse grains
(*see Supplemental Material in [30]), such that the initial
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FIG. 2. Changes in (a) packing fraction φ, (b) bond-
orientation order Ψ6, (c) primary and second amplitude A0

and A1, and (d) peak-to-peak distance between amplitudes
λ, in both pre (blue points) and post-jammed (red diamonds)
systems as the elastica is injected (∆/L0). Two characteristic
lengths are seen to emerge: (e) a critical injected arc length
of elastica ∆c necessary to induce jamming in a 2D granular
array, and (f) the length of the confinement region λc in which
the elastica will localize curvature, as a function of packing
fraction.

packing fraction, φi = πNr2/Bi, where r = 8.9±0.4 mm
is the average grain radius, N is the number of grains,
and Bi is the area of the ith side (i = 1, 2), is the same
on either side. Prior to each run, the particles were me-
chanically agitated, then allowed to settle to remove any
hysteretic effects. The geometrically nonlinear behavior
of the elastica is dependent on bending rigidity per unit
width, Eh3/12, where E is Young’s elastic modulus, and
h is thickness. Elastic instabilities and subsequent stress
localization in flexible rods are generally characterized
by a region of maximum curvature, κm ∼ A0/λ

2, where
A0 is the primary amplitude, and λ is an effective buck-
ling length. Here, we define λ as the distance between
the two primary maxima of deformation A0 and A1 (see
Fig. 1) [31]. We first quantify the elastogranular interac-
tions as the elastica’s arc length was increased by a length
∆ in a quasi–static manner from an initial length L0 for
a range of initial packing fractions φ0 (Fig. 1i.–iii.).

An elastica, clamped at its ends within fixed bound-
aries, adopts a cosine–like deflection profile when in-
jected into a low density granular array, i.e. φ0 . 0.3
(see Fig. 1i.), with its exact shape being governed by
an elliptic integral [32]. At larger packing fractions,
0.3 . φ0 < φj , the post-buckling geometry of the elas-
tica breaks the initial left–right symmetry between areas
B1 and B2 with a maximum amplitude that grows as

A0/L0 ∼
√

∆/L0 (Fig. 2c). The packing fraction on the
side containing A0 increases, this subsystem eventually
reaching a jammed state at a critical packing fraction
φj = 0.8305 ± 0.0135 [30], and a critical elongation ∆c

(Fig. 2a – blue circles). Reordering of the granular array,
characterized by the global bond orientation parameter

Ψ6 =
∣∣∣N−1

∑N
m=1N

−1
b

∑Nb

n=1 e
6iθmn

∣∣∣, occurs following

the onset of jamming (Fig. 2b – blue circles), along with
a slight drop in normalized distance between maxima,
λ/L0 (Fig. 2d – green circles). Following this reorder-
ing, λ values are seen to remain constant as additional
arc length is injected into the system. Once a jammed
state is reached (see Fig. 1iii.), the packing fraction re-
mains constant as the elastica’s arc length is increased.
In high density granular assemblies, (i.e. φ0 ≥ φj), the
elastica buckles in an antisymmetric mode two shape,
with peaks (A0 and A1) of similar amplitude (Fig. 2b –
red diamonds). To accommodate increasing ∆, localized
disturbances and disaggregation of the granular array oc-
curs in the neighborhood of both A0 and A1 (Fig. 2b –
red diamonds). In what follows, we establish a physi-
cal model to describe these characteristic elastogranular
behaviors.

We begin by describing ∆c, the arc length of elastica
necessary to induce jamming in a packing with φ0 < φj .
For the range of experimentally prepared packings, we
find that the initial half wavelength λ remains essentially
constant at low injection, when ∆/L0 < 0.1. This con-
sistency at low ∆ across all investigated packing frac-
tions suggests that we may be able to probe our sys-
tem for a linearly derived length scale, an approach uti-
lized in both simulations and experiments of 2D gran-
ular systems [33–37]. From this linear regime, we de-
fine a characteristic length λc as the average of λ for
0 < ∆/L0 < 0.1. For low ∆ and initial packing frac-
tions φ0 < φj , the elastica exhibits a primarily mode one
shape. Recalling that the primary amplitude scales as
A0/λ ∼

√
∆/L, we approximate the buckled elastica as

a triangle of base λc and height A0 (inset Fig. 2e). As the
area on one side of the array is reduced by 1

2λ
2
c

√
∆/L,

the packing fraction as a function of ∆ may be written
as φ (∆) = πr2N/(L0W0 − 1

2λ
2
c

√
∆/L). It follows that

by separating the initial packing fraction φ0, and consid-
ering the array at jamming, where φ→ φj and ∆→ ∆c,
we arrive at a critical length of elastica needed to jam a
2D array of soft, nearly frictionless spherical grains, i.e.
an effective elastogranular length,

∆c

L0
∼
(
L0

λc

)4 [
1− φ0

φj

]2
. (1)

Equation 1 is plotted with a slope of 1/2 in Fig. 2e along
with individual packings that jammed at a critical arc
length ∆c, and captures the critical length to induce jam-
ming very well. This characteristic length is analogous
to a length scale recently found to describe the onset of
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bending of an elastic filament within a granular flow [8].
Beyond the jamming threshold, the elastica always lo-

calizes deformation over a finite length smaller than L0

(Fig. 2f), similar to its behavior on a homogenous elastic
foundation [9–12, 38]. Notably, this length diverges when
it approaches the jamming packing fraction. Empirically,
we can characterize our system by

λc ∼
1

(φ− φj)α
. (2)

Eq. 2 best fits our measurements for α = 0.185 [30].
Previous publications have already reported the obser-
vation of diverging length scales in disordered granular
media subject to local stimuli, both experimentally [39]
and via simulations [33, 35, 40, 41]. In our experiments,
high packing fractions and monodisperse grains give rise
to a highly ordered granular array globally, while grains
near the localized deformation of the elastica tend to be
disordered [30]. These disordered grains are the most
likely to recirculate to accommodate additional elastica
arc length [42]. As the packing fraction increases, the
maximum number of disordered grains that can recir-
culate must necessarily decrease, presenting an area of
characteristic size λg available for the elastic to deform
within. Therefore, we look for a similar relationship be-
tween λg and φ−φj in the granular arrays by measuring
the granular displacement field that arises via the initial
buckling of the elastic rod. By measuring the characteris-
tic length of grain motion λg, we find a similar diverging
length scale near jamming, such that λg ∼ (φ − φj)−β ,
with β = 0.19 [30] [43]. The similarity in these exponents
suggests that as the elastic rod locally applies a force on
the granular media, it is limited in its own deformation
range due to the propagation of these forces through the
grains.

To understand how the local packing and order of the
granular array influences the shape of the confined elas-
tica, we compare the elastica shape and granular ordering
of two typical experiments (φ0 = 0.70 and φ0 = 0.90) in
Fig. 3a, where each grain is colored by a measure of its
local bond orientation number, ψ6

m = N−1
b

∑Nb

n=1 e
6iθmn .

In the non-jammed array, the grains move freely to
accommodate the growing amplitudes of the elastica,
while jammed arrays must rearrange to accommodate
the growing elastica. In Fig. 3a (when φ0 = 0.90), re-
gions near the fixed end of the elastica are surrounded
by hexagonally packed grains [44]. Bound by these re-
gions, whose geometry is seen to match that of a 2D
hexagonal unit cell, elastica deformations tend towards
an antisymmetric, overlapping fold – a shape expected
for large folds on fluid interfaces, but not commonly ob-
served [45]. Notably, λ remains constant for φ < φj , yet
decreases for φ ≥ φj .

We confirm this by plotting A0/λ as a function of√
∆/L over a range of initial packing fractions in Fig. 3c.

For all φ0 and ∆/L < 0.3, the normalized amplitude
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FIG. 3. (a) For φ0 < φj, the elastica buckles to one side of
the enclosure, inducing jamming at a critical injection length
∆c. At φ0 ≥ φj, antisymmetric folding of the elastica oc-
curs within a lozenge shaped region of the granular array. (b)
Model experiments demonstrate how crystalline structures in
the granular media effectively act as a rigid boundary, con-
fining the elastica. (c) A0/λ as a function of

√
∆/L. For

φ < φj (blue triangles), deformations follow the shape of a
free elastica (blue solid line), while above jamming (φ > φj,
red squares), the presence of an upper bound (corresponding
to lozenge crystal structure), confines the elastica. This up-
per limit was verified both experimentally (black circles) and
numerically (red line).

scales linearly with
√

∆/L (Fig. 3c – dashed black line),
which is consistent with the definition of λc. At larger
confined lengths, the ratio of amplitude to wavelength
strongly depends on whether the elastica is injected into
a loose (blue triangles) or jammed (red squares) granular
state. Within a loose granular array A0/λ follows the
shape of the antisymmetric, nonlinear elastica (Fig. 3c –
solid blue line) [30, 32]. The ratio of A0/λ rapidly di-
verges from the classical behavior when the elastica elon-
gates within a jammed array.

As a granular medium transitions from below jam-
ming to a marginally stable jammed state, collective de-
creases in interparticle distance lead to the development
of heterogeneous force chains between contacting parti-
cles [46, 47]. In the case of a monodisperse medium, this
results in local crystal structures that are difficult to de-
form, and these crystals act to effectively constrain the
elastica’s deformation. To illustrate this effect, we show
experimental results for two extreme cases: an elastica
buckled in mode two that can either (i.) freely elon-
gate within the granular medium, or (ii.) be completely
confined in a crystalline geometry imposed by the grains
(Fig. 3b). In the second case, we used rigid walls that
correspond to four local hexagonal crystals surrounding
the elastic beam, forming a 60 degree angle with the hori-
zontal, and creating a lozenge–like shape of characteristic
length λg. This limiting case is similar to the shape of
the compacted region described by Kolb et al. [42], and
is partially illustrated by Fig. 3a. (see black lines), where
we observe the elastica surrounded by granular crystals,
which appear yellow in Fig. 3a. As the initial buckling
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FIG. 4. (a) Maximum curvature of the elastica normalized
by its thickness κmh, as a function of the initial packing frac-
tion φ0. The light and dark blue circles describe κmh for an
injected arc length ∆/L0 = 0.1 and 0.41, respectively. Red
squares correspond to κmh preceding a dislodging event. The
light and dark gray diamonds correspond to measurements
from experiments with rigid boundaries (see associated im-
ages). System behavior described by three distinct regions
(I, II, III). (b) Examples of the vector fields of granular dis-
placements for each region. Grain opacity corresponds to the
norm of their vector displacement.

of the elastic beam depends on the packing fraction, we
chose the minimum observed value of λc as the character-
istic length of our confinement. We confirm that confine-
ment within this space represents an upper bound on the
diverging ratio of A0/λ via experiments (image sequence
Fig. 3b and black points Fig. 3c) and by numerically solv-
ing the equation for an elastica buckling within a lozenge–
shaped void (red line Fig. 3c) [30]. These results suggest
a means for studying the localization of elastic structures
within more complex granular configurations, as different
geometrically limiting cases will emerge.

It appears from Fig. 3c that the elastica governs the
elastogranular behavior when φ < φj , while the granular
array governs the behavior when φ ≥ φj , however this
trend breaks down at high packing fractions or in rare
cases where we observe highly localized elastica folds. At
large enough confinement, the granular monolayer can
yield by vertically dislodging a grain [48]. In Fig. 4, we
plot the maximum curvature of the elastica normalized
by its thickness, κmh, as a function of the grains pack-
ing fraction φ for a short and a long injected arc length
(∆/L0 = 0.11 and 0.41 for the light and dark blue cir-
cles, respectively), and indicate the curvature at which
a grain was dislodged (red squares). We note three re-
gions in this plot. In region I, we observe an equilibrium

elastica shape, and no grain dislodgings. Tracking the
displacement vectors of each grain for a characteristic
experiment in this region, we see that a high number
of grains close to the primary maxima A0 and A1 tend
to displace (Fig. 4I). Granular configurations can force
the elastica to localize with a high curvature, and be-
cause we observe granular motion tending to focus in a
given direction, the highly curved beam can act like a
point force within the array (Fig. 4II). At the same
packing fraction, we sometimes observe more highly con-
fined elastica shapes composed of folds of high curva-
ture, which can induce dislodging within the granular
array (Fig. 4II). Finally, beyond a critical packing frac-
tion, dislodging events appear to be independent of κmh
(Fig. 4III). To understand the role of packing fraction
on dislodging, we homogeneously reduced the area occu-
pied by a monolayer of grains absent of an elastica, and
measured φ at the first dislodging event. A small pertur-
bation beyond a critical packing fraction of φd = 0.926
(black vertical line) dislodges a grain, suggesting that
the appearance of dislodgings indicate the packing limit
of these soft beads [49]. Here again we observe a similar
granular displacement field as seen in region I, though
confined to a smaller region as expected from equation 2.

The wealth of elastogranular behaviors observed here
indicate an intricate coupling between geometrically non-
linear slender bodies and heterogenous, fragile matter.
The confinement and deformation of the slender struc-
ture is highly dependent on the proximity of the granular
array to the jamming point, yet the competition between
the structure’s elastic energy and the granular matter’s
local order gives rise to a variety of elastogranular behav-
iors (notably antisymmetric/overlapping folds and a de-
formation length scale proportional to packing fraction)
that can be observed across a range of packing fractions
and confined lengths. These results will bring new insight
into the behavior of deformable structures within gran-
ular matter, colloidal systems, and soft gels, and will be
relevant to modeling root growth and developing smart,
steerable needles.
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