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We propose a trial wave function for the quantum Hall bilayer system of total filling factor νT = 1
at a layer distance d to magnetic length ` ratio d/` = κc1 ≈ 1.1, where the lowest charged excitation
is known to have a level crossing. The wave function has two-particle correlations which fit well
with those in previous numerical studies, and can be viewed as a Bose-Einstein condensate of free
excitons formed by composite bosons and anti-composite bosons in different layers. We show the
free nature of these excitons indicating an emergent SU(2) symmetry for the composite bosons at
d/` = κc1, which leads to the level crossing in low-lying charged excitations. We further show the
overlap between the trial wave function and the ground state of a small size exact diagonalization
is peaked near d/` = κc1, which supports our theory.

PACS numbers: 73.21.Ac 73.43.-f 71.35.Ji

The two-dimensional (2D) electron quantum Hall bi-
layer exhibits a rich physics [1, 2]. When the system has a
total filling factor νT = 1 and a negligible interlayer hop-
ping, an exciton superfluid phase arises at small layer
distances d [3], which exhibits a perfect Coulomb drag
effect [4–7] and a greatly enhanced interlayer tunneling
[8]. The electrons and holes in the lowest Landau lev-
els (LLLs) of different layers are bounded into excitons,
and form an exciton superfluid which has a U(1) sym-
metry breaking and a charge gap [9–17]. As the layer
distance d over the magnetic length ` exceeds a critical
value d/` > κc2 ≈ 1.8, the system enters a compressible
phase without superfluidity if the bilayer is symmetric
[3], which is equivalent to two copies of the ν = 1/2 com-
posite fermi liquid (CFL) as d→∞ [18–20].

Constructing trial wave functions for quantum Hall
systems proves to be a powerful and successful method
[1, 2, 21–28]. In the limit d→ 0, the ground state of the
νT = 1 bilayer is known to be the Halperin (111) state
[9, 16, 24]. Meanwhile, the ground state of the system at
intermediate layer distances 0 < d/` < κc2 is still unset-
tled [29–40], which is a major obstacle in understanding
the transition from exciton superfluid to CFL. Numeri-
cal calculations are employed to reveal the nature of the
ground state [37–44], and a charge gap closing is indeed
observed at d/` ≈ 1.8. In particular, the calculations of
both density matrix renormalization group (DMRG) and
exact diagonalization (ED) have identified a level cross-
ing between the first and second charged excitations at a
layer distance d/` = κc1 ≈ 1.1 [39, 40], which is not yet
well understood.

In this letter, we propose a trial wave function for the
exciton superfluid of the νT = 1 bilayer at the level cross-
ing layer distance d/` = κc1, and show its two-particle
correlations fit well with the previous DMRG results [39].
The wave function can be viewed as a Bose-Einstein
condensate (BEC) of free excitons formed by compos-
ite bosons (CBs) and anti-CBs in different layers, based

on which we argue there is an emergent SU(2) symmetry
for the CBs at d/` = κc1 that ensures the level crossing.
In a crude estimation we obtain κc1 ≈ ln 4 ≈ 1.4, which
is comparable to the numerical result κc1 = 1.1. Lastly,
we show the trial wave function has a high overlap with
ground state of a small size ED calculation at d/` = κc1.

we shall take a simplification that all the electrons in
the νT = 1 bilayer are in the LLL of each layer, which
is legitimate in the situation e2/ε` . ~ωc [23] as is true
in the experiments [3–8]. Here e is the electron charge,
ε is the dielectric function, ` =

√
~c/eB is the magnetic

length, ωc = eB/mec is the cyclotron frequency, B is
the magnetic field, and me is the effective electron mass.
We also assume the interlayer hopping is zero. Since
the LLL has no kinetic energy, the energy of the system
is solely determined by the Coulomb interactions, which
take the form V11(q) = V22(q) = 2πe2e−q

2`2/2/εq and

V12(q) = 2πe2e−qd−q
2`2/2/εq in the Fourier space when

projected into the LLL [16, 39, 40], where q is the trans-
ferred momentum, and Vij(q) is the interaction between
two electrons in layers i and j. It is conventional to define
layers 1 and 2 as pseudospins sz = +1/2 and sz = −1/2,
respectively, so the Hamiltonian of the system has a U(1)
pseudospin rotational symmetry about the z axis.

We first briefly review the ground state of νT = ν1 +
ν2 = 1 bilayer in the limit d → 0, namely, the Halperin
(111) state:

Ψ111 = µ(z, w)

N∏
i<j

(zi−zj)
M∏
k<l

(wk−wl)
N,M∏
i,k

(zi−wk), (1)

where zi = x
(1)
i + iy

(1)
i and wk = x

(2)
i + iy

(2)
i are the

complex coordinates of the i-th of the N electrons in
layer 1 and the k-th of the M electrons in layer 2,
respectively, and µ(z, w) =

∏
i e
−|zi|2/4`2

∏
k e
−|wk|2/4`2

is the Landau level Gaussian factor in the symmetric
gauge. The total number of electrons N + M is equal
to the Landau level degeneracy, while ν1 = N

N+M and
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ν2 = M
N+M are the filling factors of layers 1 and 2, re-

spectively. Note that when d → 0, the Coulomb inter-
actions V11(q) = V12(q) = V22(q) become independent
of the layer indices, so the pseudospin rotational sym-
metry of the system is enhanced to SU(2). As a result,
the ground state should reduce to a ν = 1 monolayer in-
teger quantum Hall (IQH) state if the layer indices are
omitted, which indeed holds for state Ψ111.

Unlike most bilayer quantum Hall states, the filling
factor difference ν1 − ν2 in Ψ111 is not fixed, which also
holds in the entire exciton superfluid phase. [39, 40].
This leads to a U(1) symmetry breaking order parameter

∆(r) = 〈c†1(r)c2(r)〉 6= 0 and a charge neutral Goldstone
mode, where cj(r) is the electron annihilation operator
at position r in layer j [9, 14, 45]. Note that ∆(r) can
be viewed as the pairing amplitude of an electron and
a hole in different layers, so it marks the occurrence of
an exciton superfluid. In a symmetric bilayer with ν1 =
ν2 = 1/2, the pseudospin is polarized in the x-y plane at
an angle arg ∆(r) from the x axis.

The exciton superfluidity of state Ψ111 can be seen
more clearly via a particle-hole transformation in the LLL
of layer 2 [46, 47], after which the state Ψ111 becomes a
wave function of N electrons in layer 1 and N holes in
layer 2 as shown in Ref. [16]:

Ψ0 = µ(z, w)
∑
σ

sgn(σ)

N∏
i=1

eziw
∗
σi
/2`2 = detMij (2)

plus a full electron LLL in layer 2, where µ(z, w) =∏N
i=1 e

−(|zi|2+|wi|2)/4`2 is again the Gaussian factor ex-
cept that wi now are the coordinates of holes, σ is the
permutation of 1 through N with sgn(σ) being its sign,
and detMij is the determinant of theN byN matrix with

elements Mij = e−(|zi|
2−2ziw∗

j+|wj |
2)/4`2 . Both the elec-

trons and holes in such a wave function are in the LLLs
at a filling factor ν1. Note that |Mij |2 = e−|zi−wj |

2/2`2 ,
so one can view each Mij as a bound state of the i-th
electron and j-th hole, i.e., an exciton wave function.
Therefore, Ψ0 can be understood as a BEC of N free ex-
citons (similar to the Slater determinant state of N free
fermions). The free nature of the excitons is exactly due
to the enhanced SU(2) symmetry as d→ 0. As shown in
Fig. 1(e), the Coulomb interaction between two excitons
is approximately

VE(q) = V11 + V22 − 2V12 = 2V11(q)(1− e−qd), (3)

so the exciton interaction VE(q) vanishes as d→ 0 [16].
At intermediate layer distances 0 < d/` < κc2, the

excitons become interacting. Since the LLLs have no ki-
netic energy, the exciton superfluid is strongly correlated
and barely understood. A prominent feature revealed
by numerical studies is a level crossing between the low-
est two charged excited states at d/` = κc1 ≈ 1.1 for
ν1 = ν2 = 1/2 [39, 40]. Besides, unlike Ψ111 where

the overlap probability of interlayer electrons is zero,
the ground state at d > 0 is shown to have a nonzero
interlayer overlap probability [39], which enlarges the
intralayer electron spacing and lowers the total energy
when V11(q) > V12(q).

We propose here a wave function for N electrons and N
holes in layers 1 and 2 respectively at certain intermediate
layer distances 0 < d/` < κc2:

Ψ1,α = µ(z, w)

N∏
i<j

(zi − zj)(w∗i − w∗j )
∑
σ

N∏
i=1

eαziw
∗
σi
/2`2

=

N∏
i<j

(zi − zj)(w∗i − w∗j )perm Mij(α) ,

(4)

where α is a real parameter satisfying 0 ≤ α ≤ 1, and
perm Mij(α) is the permanent [48] of a N by N matrix

M(α) with elements Mij(α) = e−(|zi|
2−2αziw∗

j+|wj |
2)/4`2 .

In particular, we shall show that the state Ψ1,1/2 with
α = 1/2 is a good trial wave function for the exciton
superfluid in the symmetric νT = 1 bilayer at d/` = κc1,
and gives an explanation for the level crossing.

The electron (hole) filling factor ν1 of the wave function
Ψ1,α is controlled by the parameter α. To see this, we
first note the matrix element Mij(α) can be rewritten as

Mij(α) = e−[(1−α)(|zi|
2+|wj |2)+α|zi−wj |2]/4`2+iφij , where

φij = α(ziw
∗
j − z∗i wj)/4i`

2 is real. Ignoring the phase

factor eiφij in Mij(α), one can view the translationally

invariant part e−α|zi−wj |
2/4`2 as an exciton bound state,

while regard the other part e−(1−α)(|zi|
2+|wj |2)/4`2 as the

Gaussian factor for a residual magnetic field (1 − α)B
felt by the electron and the hole. With a Jastrow fac-
tor of power 1 in Ψ1,α, one would expect the electrons
(holes) to have the same density as that of a ν = 1
IQH state in a reduced magnetic field (1−α)B, yielding
ν1 = 1−α. This is verified by our small size Markov chain
Monte Carlo (MCMC) calculations [45] for state Ψ1,α.
As shown in Fig. 1(a), the filling factor for N = 6, 10
and 15 fits very well with ν1 = 1 − α as the system size
N increases. Fig. 1(b) shows the electron (hole) den-

sity ρ(r) = 〈c†1(r)c1(r)〉 = 〈c2(r)c†2(r)〉 as a function of
the radius r = |r| in units of the fully occupied Landau
level density for N = 6 and different α, which has a flat
droplet shape with an overshoot near the edge similar to
that of the Laughlin states [49, 50].

The two-particle correlations of Ψ1,α can also be ex-
tracted out in our MCMC calculations, which are de-
fined as gee(r) = 〈c†1(r1)c1(r1)c†1(r2)c1(r2)〉/ν21 between

two electrons and geh(r) = 〈c†1(r1)c1(r1)c2(r2)c†2(r2)〉/ν21
between an electron and a hole for r = |r1 − r2|.
The correlations for different values of α are plot-
ted in Fig. 1(c), where the higher and lower curves
are geh(r) and gee(r), respectively. By transform-
ing holes in layer 2 back to electrons [45], one can
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show the interlayer electron-electron correlation g12(r) =

〈c†1(r1)c1(r1)c†2(r2)c2(r2)〉/ν1ν2 for r = |r1 − r2| is

g12(r) = ν−12 [1− ν1geh(r)] . (5)

The resulting g12(r) for different α are shown in the inset
of Fig. 1(c). In particular, for α = 1/2 where both ν1
and ν2 are 1/2, the intralayer and interlayer correlation
functions g11(r) = gee(r) and g12(r) fit remarkably well
with previous DMRG results at d/` = κc1 [39], as shown
in Fig. 2(a). This means the energy of the state Ψ1,1/2 is
quite close to the ground state energy of the system, and
thus strongly suggests Ψ1,1/2 may be a good approxima-
tion to the true ground state at d/` = κc1. For κc1 = 1.1,
the state Ψ1,1/2 yields a Coulomb energy per electron
E0 =

∑
ij
νiνj
2`2

∫
rVij(r)[gij(r)− 1]dr ≈ −0.35e2/ε` [51].

The wave function Ψ1,1/2 can be better understood
in the picture of CBs [52–55]. Here a CB (anti-CB) is
defined as an electron (hole) bound with a 2π statistical
flux relative to the other electrons (holes), which obeys
bosonic statistics. In the basis of CBs in layer 1 and
anti-CBs in layer 2, the state Ψ1,1/2 can be rewritten as:

ΨCB
1,1/2 = perm M̃ij , (6)

where M̃ij = e−(|zi|
2−2ziw∗

j+|wj |
2)/8`2 , while the Jastrow

factor in Ψ1,1/2 is absorbed by the 2π fluxes bound to
CBs and anti-CBs [27, 52–54]. In analogy to Mij in

Eq. (2), M̃ij is a wave function of a composite exci-
ton formed by the i-th CB and the j-th anti-CB, where
the magnetic field is reduced to B/2 due to their bound
fluxes. Thus, the state ΨCB

1,1/2 can be viewed as a BEC
of N free composite excitons. This leads us to conjec-
ture that the level crossing point d/` = κc1 is exactly
where the composite excitons become free. An under-
standing of this is as follows. As shown in Fig. 1(f),
the interaction between two composite excitons is deter-
mined by the intralayer and interlayer interactions V ′ij(q)
between CBs (anti-CBs). Due to the fluxes bound to the
CBs, the intralayer interaction V ′11(q) = V ′22(q) is generi-
cally largely screened compared to that of electrons [56].
As a crude estimation, V ′11(q) approximately equals to
the Coulomb potential between two e/2 (−e/2) charges,
namely, V ′11(q) ≈ V11(q)/4, since the fluxes roughly coun-
teract one half of the gauge potential. In contrast, the
interlayer interaction remains V ′12(q) = V12(q), since a
CB and an anti-CB in different layers do not have a
mutual statistical flux. The approximate interaction be-
tween two composite excitons is then

V ′E(q) = V ′11 + V ′22 − 2V ′12 ≈ 2V11(q)

(
1

4
− e−qd

)
. (7)

If we substitute q = 1/` into the formula as a character-
istic momentum, we find V ′E(q) vanishes at d/` = ln 4 ≈
1.4, which is rather close to the numerical value κc1 ≈ 1.1
considering the roughness of this estimation. A precise
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FIG. 1: (color online) (a) The filling factor ν1 of Ψ1,α as a
function of α for size N = 6, 10 and 15 from MCMC, in good
agreement with ν1 = 1 − α. (b) The density profile ρ(r) of
Ψ1,α for different α and N = 6. (c) The two-particle correla-
tions gee(r) and geh(r) of Ψ1,α for different α, and the inter-
layer correlation g12(r) plotted in the inset. (d) The low-lying
charged excitation spectrum expected in our theory, where a
level crossing occurs at both d = 0 and d/` = κc1. (e)-(f) In-
teraction between two excitons formed by electrons and holes
(e) or CBs and anti-CBs (f). (g)-(h) Illustration of the inter-
layer and intralayer bound states of two CB merons, which
we expect to be excitations E2 and E3 in (d), respectively.

determination of κc1 would call for a more careful calcu-
lation of V ′ij(q) in the future.

Similar to the case for electrons at d = 0, the van-
ishing of V ′E(q) implies an emergent pseudospin SU(2)
symmetry for CBs at d/` = κc1. In condensed matter
systems, an emergent symmetry usually leads to extra
degeneracies in the energy spectrum [57–60]. We claim
here this emergent SU(2) symmetry is responsible for the
level crossing of lowest charged excitations at d/` = κc1,
and should yield approximate degeneracies at higher en-
ergies as well. For the same reason, we expect the level
crossing to also occur at d = 0. This is understood as
follows. The minimal charged excitation in the bilayer ex-
citon superfluid is known to be the meron, which has an
electrical charge ±e/2 and pseudospin up or down in the
core, and evolves into an in-plane pseudospin vortex with
vorticity ±1 away from the core [14, 61]. In particular, a
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meron with a given vorticity can have either charge e/2
or −e/2, and the charge can be localized in either layer
depending on the core pseudospin direction [14, 45]. A
single meron has a logarithmically diverging energy with
the system size, thus is not a low energy excitation. How-
ever, it is believed that the lowest charged excitation of
charge ±e is a bound state of two merons with the same
charge but opposite vorticities [14, 32, 55, 62, 63]. There
are two kinds of such bound states (BSs) competing: one
interlayer BS and two degenerate intralayer BSs (in either
layer), where the charges of two merons are in different
layers (Fig. 1(g)) and in the same layer (Fig. 1(h)), re-
spectively. At d = 0, these two kinds of BSs are degener-
ate since they have identical interactions V11(q) = V12(q).
Similarly, at d/` = κc1, we expect the lowest charged ex-
citations to be the interlayer and intralayer bound states
of CB merons (Fig. 1(g) and (h)) [45], which also have
identical interactions V ′11(q) ≈ V ′12(q) and are thus de-
generate. As a result, we arrive at the low-lying charged
excitation spectrum with a level crossing at both d = 0
and d/` = κc1 as shown in Fig. 1(d). In particular, we
expect the lower excited state E2 at small d/` to adiabat-
ically evolve from the interlayer bound state of merons
to that of CB merons, while states E1 and E3 to be the
intralayer bound states of merons and CB merons, re-
spectively. We note the level crossing cannot be avoided,
since any matrix element between the interlayer BS and
the intralayer BS must involve a fractional charge e/2 in-
terlayer hopping, which cannot be a local operator and
must be zero in the thermodynamic limit. Our results
also suggest the intralayer BSs E3 may play a key role in
the exciton superfluid-CFL transition at d/` = κc2.

A disadvantage of the above electron-hole formulation
of ν1 = ν2 = 1/2 bilayer is that it is asymmetric be-
tween the two layers. As a result, when holes in layer
2 are transformed back into electrons, the wave function
Ψ1,1/2 transforms into a bilayer wave function Ψ1/2 of N
electrons per layer, which is not exactly symmetric be-
tween two layers [45]. A layer swapping yields its mirror
state ΨM

1/2 = (−1)NΨ1/2(zi ↔ wi). Numerical calcu-

lations show their overlap |〈Ψ1/2|ΨM
1/2〉|

2 ∝ N−α with

α ≈ 0.5 [45], so the two states are orthogonal in the
thermodynamic limit. However, a power law decay of
overlap indicates the two states Ψ1/2 and ΨM

1/2 are quite
alike each other. In contrast, we find the overlap between
Ψ1/2 and the Halperin state Ψ111 decays exponentially

as |〈Ψ1/2|Ψ111〉|2 ∝ e−gN
β

with β ≈ 1.5 [45], indicating
they are rather distinct states. Therefore, it is reason-
able to believe that Ψ1/2 and ΨM

1/2 differ only by some

low-energy gapless Goldstone modes [9, 12], and are both
close to the ground state at d/` = κc1. We then propose
their symmetric superposition ΨS

1/2 = Ψ1/2 + ΨM
1/2 as an

improved trial wave function, which respects the mirror
symmetry between two layers.

To further test the validity of our theory, we run a
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FIG. 2: (color online) (a) Two-particle correlations g11(r) and
g12(r) of state Ψ1,1/2 (solid blue lines) obtained on disk and
those at d/` = κc1 reproduced from DMRG calculations on
torus in Ref. [39] (dashed red lines). (b) Overlap of the
ground state ΨED from ED calculations for N = 2 electrons
per layer with trial wavefunctions Ψ111, Ψ1/2 and ΨS

1/2, re-
spectively, as a function of d/`.

small toy size ED calculation for ν1 = ν2 = 1/2 with
N = 2 electrons per layer at different d/`, and calculate
the overlap between the ED ground state ΨED and three
trial wave functions Ψ111, Ψ1/2 and ΨS

1/2 in the same to-

tal angular momentum sector[45]. As shown in Fig. 2(b),
the overlaps of both Ψ1/2 and ΨS

1/2 with ΨED are indeed

peaked at d/` ≈ κc1 as expected in our theory, and the
peak value of |〈ΨED|ΨS

1/2〉|
2 is as high as 0.95. In con-

trast, the overlap between Ψ111 and ΨED monotonically
decays with d/`. A larger size ED calculation is desired
in the future to further verify this result.

Finally, we mention that wave function Ψ1,α can be
generalized into a larger class of wave functions

Ψm,α =

N∏
i<j

(zi − zj)m(w∗i − w∗j )mf [Mij(α)] , (8)

where f [Mij(α)] is defined as detMij(α) for m even, and
perm Mij(α) for m odd, with Mij(α) defined as in Eq.
(4). These states admit a similar physical picture of
CBs or composite fermions [45], and may describe cer-
tain filling-imbalanced νT = 1 bilayers or electron-hole
bilayers [64, 65].

In conclusion, we have shown a trial wave function
Ψ1,1/2 shares many features with the numerical ground
state of νT = 1 quantum Hall bilayer at d/` = κc1 = 1.1,
and is likely to characterize the ground state well. The
wave function implies an emergent SU(2) symmetry for
CBs at d/` = κc1, which gives an straightforward expla-
nation of the excited state level crossing found therein.
These results suggest the νT = 1 bilayer at intermediate
d/` may have an easier understanding in terms of CBs.
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[42] G. Möller, S. H. Simon, and E. H. Rezayi, Phys. Rev.

B 79, 125106 (2009), URL https://link.aps.org/doi/

10.1103/PhysRevB.79.125106.
[43] K. Park, Phys. Rev. B 69, 045319 (2004), URL https:

//link.aps.org/doi/10.1103/PhysRevB.69.045319.
[44] J. Schliemann, S. M. Girvin, and A. H. MacDonald, Phys.

Rev. Lett. 86, 1849 (2001), URL https://link.aps.

org/doi/10.1103/PhysRevLett.86.1849.
[45] See the supplementary material for details (where addi-

tional Refs. [66–70] are cited).
[46] S. M. Girvin, Phys. Rev. B 29, 6012 (1984).
[47] S. M. Girvin and T. Jach, Phys. Rev. B 29,

5617 (1984), URL https://link.aps.org/doi/10.

1103/PhysRevB.29.5617.
[48] The permanent of a matrix M is defined as perm Mij =∑

σ

∏
iMiσi , where σ runs over all permutations.

[49] N. Datta, R. Morf, and R. Ferrari, Phys. Rev. B
53, 10906 (1996), URL https://link.aps.org/doi/10.

1103/PhysRevB.53.10906.
[50] T. Can, P. J. Forrester, G. Téllez, and P. Wiegmann,

Phys. Rev. B 89, 235137 (2014), URL https://link.

aps.org/doi/10.1103/PhysRevB.89.235137.
[51] Here V11(r) = e2/εr and V12(r) = e2/ε

√
r2 + d2 are un-

projected interactions.
[52] S. C. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev.

Lett. 62, 82 (1989), URL https://link.aps.org/doi/

10.1103/PhysRevLett.62.82.
[53] N. Read, Phys. Rev. Lett. 62, 86 (1989), URL https:

//link.aps.org/doi/10.1103/PhysRevLett.62.86.
[54] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
[55] J. Ye, Annals of Physics 323, 580 (2008), URL

http://www.sciencedirect.com/science/article/

pii/S0003491607001005.
[56] S.-Y. Lee, V. W. Scarola, and J. K. Jain, Phys. Rev.

B 66, 085336 (2002), URL https://link.aps.org/doi/

10.1103/PhysRevB.66.085336.
[57] C. K. Majumdar, Journal of Physics C: Solid State



6

Physics 3, 911 (1970), URL http://stacks.iop.org/

0022-3719/3/i=4/a=019.
[58] C. D. Batista and B. S. Shastry, Phys. Rev. Lett.

91, 116401 (2003), URL https://link.aps.org/doi/

10.1103/PhysRevLett.91.116401.
[59] C. D. Batista and G. Ortiz, Advances in Physics 53, 1

(2004).
[60] P. Chen, Z.-L. Xue, I. P. McCulloch, M.-C. Chung,

C.-C. Huang, and S.-K. Yip, Phys. Rev. Lett. 114,
145301 (2015), URL https://link.aps.org/doi/10.

1103/PhysRevLett.114.145301.
[61] I. Affleck, Phys. Rev. Lett. 56, 408 (1986), URL https:

//link.aps.org/doi/10.1103/PhysRevLett.56.408.
[62] K. Moon and K. Mullen, Phys. Rev. B 57, 1378 (1998),

URL https://link.aps.org/doi/10.1103/PhysRevB.

57.1378.
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