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Photoexcitation cascade and quantum-relativistic jets in graphene
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In Dirac materials linear band dispersion blocks momentum-conserving interband transitions, cre-
ating a bottleneck for electron-hole pair production and carrier multiplication in the photoexcitation
cascade. Here we show that the decays are unblocked and the bottleneck is relieved by subtle many-
body effects in which the intermediate e-h pairs reside off-shell. The decays result from a collective
behavior that cannot be accomplished by just one e-h pair but requires simultaneous coherent ac-
tion by many pairs. In addition to providing a mechanism explaining existing experimental data,
we predict striking characteristic signatures of the off-shell pathways such as sharp near-collinear
angular distribution of secondary carriers, resembling the celebrated relativistic jets in high-energy
physics. The collinear scattering enhances carrier multiplication, allowing for emission of as many
as ∼10 secondary carriers per single absorbed photon.

The general question of how an excited electron parti-
tions its energy among lower-energy excitations is central
to the fields ranging from condensed matter to particle
physics. One key pathway is the emission of particle-
hole pairs, a process that leads to carrier multiplica-
tion in a photoexcitation cascade. Physics becomes par-
ticularly interesting in Dirac materials with linear car-
rier dispersion [1], where strong interactions enhance the
carrier-carrier scattering whereas momentum conserva-
tion greatly restricts the phase space available for such
processes and (naively) may entirely block decays (see
Fig.1a) [2–4]. The competition between interactions and
kinematic constraints is a foundational question for many
areas in solid state and high energy physics. In models
of graphene photoresponse it is usually taken for granted
that energy is conserved at all times and throughout
all stages of the cascade, with transitions taking place
‘on-shell’ [5–10]. Here we introduce the off-shell pro-
cesses involving virtual states that disobey the energy-
momentum relation. We argue that these processes dom-
inate photoresponse, producing large numbers of sec-
ondary electron-hole (eh) pairs. These processes are con-
ceptually similar to the off-shell processes in high-energy
physics responsible for the formation of relativistic jets.
The dilemma faced by a photoexcited electron in a

Dirac material can be summarized through the quantum-
mechanical uncertainty relation. The latter permits en-
ergy non-conservation for relatively short time intervals
not exceeding the inverse decay time:

∆ε .
~

τ
. (1)

Suppose the dependence τ vs. ∆ε is such that increasing
the “offshellness” ∆ε opens up a large phase space for
decays. In this case, the off-shell processes with large ∆ε
will win over the processes with a smaller ∆ε.
As we will see, the offshell dynamics has striking conse-

quences for the photoexcitation cascade and, ultimately,
the photoresponse. Firstly, in addition to a primary
photogenerated eh pair, multiple secondary pairs will be
produced through the processes of the type pictured in

µ=0 hν

1’

1
1

2’

µ=0 hν

1’

1
2

2’

a) b)

B=0

θ

hν
G/hBN

G/SiC

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0

1

2

3

4

5

Azimuthal angle θ

C
o
u
n
t
ra
te

d)

e)c)

hν

B≠0

FIG. 1. a,b) Types of carrier scattering in a Dirac band. The
on-shell processes (a) are subject to energy and momentum
conservation, and therefore cannot trigger transitions between
physical states in different linearly dispersing bands [8, 11].
This bottleneck is relieved by the off-shell processes (b) medi-
ated by virtual states residing off the Dirac cone. This triggers
collinear scattering and emission of multiple soft eh pairs with
a tightly focused jet-like angular distribution. The jets can be
probed as illustrated in (c,d). A photon (red dot) creates an
eh jet that is detected by a group of adjacent contacts (acti-
vated contacts are shown in magenta). A weak B field blocks
soft pairs from reaching contacts (d), allowing for the energy
distribution to be directly probed. e) Angular distribution of
secondary pairs for ee interaction screened by the substrate.
Parameter values used: κG/hBN = 3.01, κG/SiC = 6.28.

Fig.1b. These pairs are typically considerably softer than
the primary pair, forming a broadband energy distribu-
tion analyzed below. Secondly, due to the collinear char-
acter of relevant electron-electron (ee) collision processes,
the secondary pairs are preferentially emitted along the
primary pair velocity direction, forming a jet-like angu-
lar distribution (see Fig.1c,e). The latter can be studied
experimentally using a solid-state analog of a particle
detector realized as a circular array of photocurrent de-
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FIG. 2. Diagrammatic representation of single-photon ab-
sorption. Dashed lines describe interaction with a photon
source, straight lines with arrows denote electron and hole
propagators, wavy lines denote the dynamically screened
Coulomb interaction, Eq.(3).

tectors [12–14], see Fig.1c. An external magnetic field
that deflects the orbits of soft carriers but has little ef-
fect on the more energetic carriers (see Fig.1d). A field of
strength B prevents carriers with energies ε < eBvR/2
from reaching the detectors at a distance R, providing a
direct probe of the energy distribution of soft pairs.
Our system is described by the Hamiltonian for N

species of massless Dirac particles (N = 4 for graphene):

H =
∑

i=1...N

∑

k

ψ†
k,i (~vσ · k)ψk,i +Hee. (2)

Here the optical field is included through minimal cou-
pling k → k− e

~c
A and Hee describes ee interactions [15].

We focus on the processes in a pristine material (un-
doped and disorder-free), assuming high mobility, long
mean free paths and, for simplicity, ignoring the effects of
electron-phonon scattering. While in real materials these
effects may be significant, reducing the net response, they
do not alter the outcome of competition between the on-
shell and off-shell ee processes.
There are several ways to develop perturbation theory

for ee scattering: the weak-coupling approach uses small

fine structure constant α = e2

κ~v
≪ 1, the large-N ap-

proach uses as a small dimensionless coupling 1/N ≪ 1
with an RPA-screened interaction [16–19]. The latter
approach (which we use below) is in principle capable of
dealing with systems at strong coupling α > 1 as long as
the number of species N is large enough. The resulting
diagrammatics resembles that of QED, modulo replacing
photon propagator by the dynamically screened Coulomb
interaction [16].
A salient feature of Feynman diagrams describing the

processes of secondary pair creation (see Fig.2) is the
double log divergences similar to those familiar in QED
and QCD [20–22]. Below we analyze excitation of eh
pairs described by log2-divergent diagrams, which reflect
production of infinitely many soft eh pairs. We show that
in the large-N framework the rate for producing p pairs
behaves as N−p log2p. We tackle the multiple log2 di-
vergences using a suitably modified QED-type approach
[20], resumming the contributions with the highest pow-
ers of log2. This approach allows us to obtain a detailed

picture of the cascade, including the angular distribution
of secondary pairs comprising a quasirelativistic jet, and
other characteristics of interest such as the energy distri-
bution of secondary pairs. We stress that the behavior of
log divergences in graphene field theory is close to that
in (3+1)-dimensional QED [16], whereas the behavior in
(2+ 1)-dimensional QED is quite different [23, 24] but is
not directly relevant here.
We note that in a realistic setting the linear dispersion

of Dirac bands, which is crucial for our analysis, is an
asymptotic behavior valid at low enough energies. This
makes the properties of soft pairs universal and largely
insensitive to the details of band dispersion. This is the
case, for example, for trigonal warping, which is signif-
icant away from the Dirac point, but vanishes near it
[1]. Another, potentially more critical, deformation of
the Dirac cone arises due to interaction-induced velocity
renormalization. The latter leads to dispersion ‘steepen-
ing’ close to the Dirac point. This has two effects: one
is further suppression of the on-shell relaxation rate, the
other is a decrease in the phase-space available for parti-
cles with small offshellness. However, since these effects
occur at a first-log order, they are subleading to the log2

effects analyzed below.
Photon absorption is represented diagrammatically, at

the tree level, as a sum of contributions with one in-
coming photon leg and many outgoing particle legs, with
the screened interaction (wavy lines) replacing photon
propagator in the corresponding QED diagrams, as illus-
trated in Fig.2. The diagram with two particle legs de-
scribes creation of a primary eh pair, an on-shell process
with no virtual states. Such states, present in the dia-
grams of higher order, are described by internal fermion
lines without open ends. The higher-order diagrams de-
scribe creation of multiple secondary pairs. The wavy
lines represent the dynamically screened interaction ex-
pressed through an exact polarization function as

Ṽq,ω =
Vq

1− VqΠ(q, ω)
, Vq =

2πe2

κ|q|
, (3)

with q and ω denoting the transferred momentum and
frequency, and κ is the mean permittivity (κ1 + κ2)/2,
where κ1,2 characterize the material above and below
graphene layer. As we will see, the polarization func-
tion needs to be introduced in order to soften the small-q
divergence of Vq . We use a simple expression [11, 25],

Π(q, ω) = −
iNq2

16~

1
√

ω2 − v2q2
, (4)

describing the interband eh pair excitations, ω > vq.
Crucially, even a single secondary pair creation is a

strongly off-shell process. Indeed, linearity of band dis-
persion ε(k) renders the ee scattering processes obeying
energy and momentum conservation to be of a strictly
collinear character [2]. Collinear scattering is subject to



3

a phase space constraint that makes the transition rate
vanish (see Fig.1a) [11]. In contrast, no phase space con-
straints arise for the off-shell processes (see Fig.1b), and
in fact the large phase space generates the double log-
divergent contributions to the transition rate. This be-
havior extends to all higher-order muliple pair creation
processes.
Turning to the quantitative analysis, we consider the

second and third diagrams pictured in Fig.2, which de-
scribe an initial photoexcited eh pair with energy and
momentum positioned off-shell that excites a secondary
eh pair via an interband transition. At the end all par-
ticipating particles are found in the on-shell states at the
Dirac cone. The transition rate for this process, within
the standard Golden Rule approach, takes the form:

W0→1 =
2π

~
N2

∑

k′

1
+k′

2
=k1+k2

fk′

1
(1− fk1

)fk′

2
(1− fk2

)|A|2δ∑ ε

(5)
Here fk is the Fermi function, hν is the absorbed pho-
ton energy (we set photon momentum equal zero), and
δ∑ ε = δ(εk1

+ εk2
− εk′

1
− εk′

2
− hν). The transition

matrix element A is given by a sum of two second-order
contributions, which differ by the order of the operators
describing photon absorption and secondary pair creation

A = 〈1, 2|Mq,ωG(εp,p)σA+ σAG(εp̃, p̃)Mq,ω|1
′, 2′〉,

|Mq,ω|
2 = |Ṽq,ω|

2F̃k2,k
′

2
Fk1,k

′

1
, (6)

where G(ε,k) is the non-interacting fermion propagator,
and we introduced a shorthand notation |1, 2〉 = |k1,k2〉,
|1′, 2′〉 = |k′

1,k
′
2〉, using unprimed and primed symbols

for the states of electrons and holes (see Fig.2). For
brevity, we suppress the Dirac spinor structure and in-
corporate the factor ve/c in the definition of the opti-
cal field A (to be restored later). The quantities Fk,k′

and F̃k,k′ represent the coherence factors 〈k′s′|ks〉 with
s = s′ and s 6= s′, describing the intraband and interband
transitions, respectively [26]. The two terms in Eq.(6)
describe the processes in which photon absorption is fol-
lowed by a pair creation, and vice versa. The virtual
states in the two contributions, Eq.(6), are characterized
by the off-shell energy values: εp = hν+ εk′

1
, p = k′

1 and
εp̃ = εk1

− hν, p̃ = k1 (we use notations from Fig.2).
As we show below, the typical energy of secondary

pairs ω is much smaller than the photoexcitation energy
hν. Anticipating this result it is convenient to factor-
ize the transition rate, expressing it through the spectral
function of pair excitations. Following the standard route
[27] we first split the energy delta function in Eq.(5):

δ∑ ε =

∫ ∞

−∞

dωδ(εk1
− εk′

1
− hν + ω)δ(εk2

− εk′

2
− ω)

Next, using the identity fk′(1−fk) = (fk′−fk)(Nεk−ε
k′
+

1), where Nω = 1

eβω−1
is the Bose function taken at

the electron temperature, we rewrite the sum of (fk′

2
−

fk2
)δ(εk2

− εk′

2
− ω) as (denoting q = k2 − k′

2)

ImΠ(q, ω) = −Nπ
∑

k2

F̃k2,k
′

2
(fk′

2
−fk2

)δ(εk2
−εk′

2
−ω) ,

a relation that follows from the definition of the polar-
ization function [25, 28]. This yields a more compact
expression for the transition rate:

W0→1 = −
2N

~

∑

k1,k
′

1
,q,ω

fk′

1
(1− fk1

)(Nω + 1)|A′|2 (7)

× ImΠ(q, ω)Fk1,k
′

1
|Ṽq,ω|

2δk′

1
,k1+qδ(εk1

− εk′

1
− hν + ω)

where ω and q are the energy and momentum of the soft
pair. Here we introduced the quantity

A′ = 〈1|G(εp,p)σA+ σAG(εp̃, p̃)|1
′〉 (8)

which represents the transition matrix element for the
primary (‘hard’) pair, factoring out the contribution of
the soft pair as described above (we again use a shorthand
notation for the electron and hole states |k1〉 and |k′

1〉 in
Fig.1c, for brevity suppressing the spin structure).
At this stage it is convenient to approximate the

Green’s functions of fermions in the virtual states
[G(εp,p) and G(εp̃, p̃) in Eq.(8)] by expanding in the
small frequency ω and momentum q transferred to the
soft pair. This is done by writing εp = εk1

+ω, p = k1+q

and εp̃ = εk′

1
− ω, p̃ = k′

1 − q and expanding in ω and
q. The approximation that uses the softness of the sec-
ondary pair as a small parameter is known as the ‘eikonal
approximation’, since at small ω and q only the phase of
the fermion wavefunction varies but not the spinor part.
We obtain simple expressions

G(εp,p) ≈
−1

ω + vq‖
, G(εp̃, p̃) ≈

1

ω − vq‖
, (9)

where q‖ is the component of q parallel to k1. We note
parenthetically that the denominators in Eq.(9) do not
vanish since the soft pairs obey |ω| > v|q|. The matrix
element A′ is then reduced to

A′ ≈
2vq‖〈1|σA|1′〉

ω2 − v2q2‖
. (10)

After plugging it in Eq.(7), the quantity W0→1 becomes

W0→1 = −
8N

~

∑

k1,q

|Ṽq,ω|
2 ImΠ(q, ω)

∣

∣

∣

∣

∣

vq‖〈1|σA|1′〉

ω2 − v2q2‖

∣

∣

∣

∣

∣

2

,

(11)
where ω = hν − 2v|k1| − vq‖ and, since T ≪ hν, we
set Nω = 0. To arrive at Eq.(11) we approximated the
intraband coherence factor by unity, since Fk1,k1+q ≈ 1
in the soft-pair limit q ≪ k1. The interband coherence
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factor F has been included in the soft pair spectral func-
tion through the factorization procedure outlined above.
Finite temperature does not appear in Eq.(11) explicitly,
however it will control the broadening of the Dirac point,
serving as a cutoff for infrared divergences that will be
discussed shortly.
The most interesting property of the transition rate

W0→1 is the double log divergence originating from the
collinear nature of ee scattering. The divergence arises
due singular behavior of the quantities in Eq.(11) upon
integration upon the soft-pair momentum q. In that,
one log divergence arises from the integral over the
length |q|, the other log comes from integration over
the angle between q and k1. For a quantitative esti-
mate we evaluate the double log contribution at lead-
ing order in 1/N , which can be done by approximating
Ṽq,ω ≈ −1/Π(q, ω). After integrating over q and k1, and
factoring outWon-shell, the transition rate for the on-shell
diagram in Fig.1e, the transition rate W0→1 becomes

W0→1

Won-shell

≈
8

Nπ2

(

ln
ε>
ε<

)2

, Won-shell =
e2A2hν

c2
N

8
,

(12)
where ≈ indicates that we suppressed an additive con-
stant [15]. Here the UV cutoff ε> is of order hν/2 (energy
of an excited electron immediately after photon absorp-
tion). The IR cutoff ε< is set by the width of the Dirac
point, controlled by temperature or disorder, whichever
is larger. The log2 divergence in Eq.(12) is a direct con-
sequence of linear dispersion, arising from soft secondary
pairs which are near-collinear with respect to the primary
pair direction.
The double-log divergence in the transition rate is rem-

iniscent of the double-log divergences familiar from QCD
or QED calculations. This can be seen e.g. by comparing
to soft Bremsstrahlung in QED [22], and noting that the
double logs arise in an identical manner in both cases,
with one log originating from an integral over momen-
tum magnitude and the other from angular integration.
As in QED, the IR double log divergence means that the
secondary pairs are much softer than the primary pair,
vindicating our eikonal approximation.
We parenthetically note that dynamical screening,

Eq.(3), is crucial for our analysis. Had an unscreened
Coulomb interaction Vq been used, the transition rate
would have been IR divergent as a power law rather than
as log2. This is in line with the argument that the per-
turbation series for Dirac semimetals should be carried
out in powers of a screened interaction rather than the
bare one [19]. This is in contrast to QED, where double
log divergences arise from perturbation theory in bare
coupling.
Motivated by the resemblance to QED, the higher-

order contributions of the form N−n log2n can be ana-
lyzed by a Sudakov-like resummation scheme of leading
double-log divergent diagrams. These diagrams describe

primary pair creation followed by emission of multiple
secondary pairs in analogy to ‘hard’ scattering processes
in QED accompanied by emission of soft photons. There
are soft eh pairs of two distinct types emitted, respec-
tively, by the hard electron and the hard hole (the corre-
sponding digrams are pictured in Fig.2). For each type,
in the limit of the emitted pairs being independent of one
another and assuming no mutual phase-space blocking,
the probability distribution is Poissonian [22],

pn =
λ̃n

n!
e−λ̃, λ̃ =

4

Nπ2

(

ln
ε>
ε<

)2

. (13)

The value λ̃ is a half of the total single-pair emission
rate given in Eq.(12). Combining two identical Poisson
distributions gives a Poisson distribution with a double
rate [15]

W0→n

Won-shell

=
λne−λ

n!
, λ = 2λ̃ =

8

Nπ2

(

ln
ε>
ε<

)2

. (14)

The mean number of secondary pairs 〈Nsec〉 = λ goes
as log2 and hence can be much greater than unity. As
an illustration, a hν = 1eV photon absorbed in graphene
creates ∼ 4 pairs at room temperature and ∼ 7 pairs at
77K, where the dependence on photon energy and tem-
perature enter through ε> ad ε<, respectively. The mean
number of pairs 〈Nsec〉 slowly increases as temperature
decreases, reaching ∼ 20 pairs at 1K [15].
One interesting implication of our analysis is that the

process in which no soft pairs are emitted has a vanishing
rate. Indeed, W0→0 vanishes in the limit ε< → 0. To in-
terpret this result we note that the sum of all partial rates
equals the bare on-shell rate:

∑∞
n=0

W0→n = Won-shell.
This means that massive emission of soft pairs does not
alter the net photon absorption probability. At the same
time the absorbed photon energy is redistributed among
a large number of secondary eh pairs (carrier multiplica-
tion).
As discussed in the Supplement [15], massive produc-

tion of soft near-collinear pairs occurs in the direction of
the primary excitation, forming a pair of jets. The jets
are manifest in a sharp angular distribution of emitted
pairs with singularities at θ = 0, π (see Fig.1c). They are
also characterized by a broad energy distribution with a
tail at low energies, ∝ ω−1, confirming our assumption
about the dominant role of soft pairs.
In summary, the off-shell pathways unblock kinematic

constraints for collinear scattering in a Dirac band, al-
lowing a large number of secondary pairs to be produced
as the photogenerated carriers cascade down in energy.
The angular distribution of secondary pairs is sharply
peaked along the primary pair velocity, representing a
condensed-matter analog of relativistic jets familiar from
high-energy physics. As discussed above, the jets can
be directly probed using a solid-state equivalent of par-
ticle detectors (Fig.1c,d). Formation of jets is corrobo-
rated by recent experimental studies of Auger scattering
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processes [29, 30], which indicate that at weak electron-
phonon coupling the collinear scattering processes dom-
inate the relaxation pathways of photoexcited carriers.

We acknowledge support of the Center for Integrated
Quantum Materials (CIQM) under NSF award DMR-
1231319.

[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S.
Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109
(2009).
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