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We study the low-energy excitations of the Bose-Hubbard model in the strongly-interacting su-
perfluid phase using a Gutzwiller approach. We extract the single-particle and single-hole excitation
amplitudes for each mode and report emergent mode-dependent particle-hole symmetry on specific
arc-shaped lines in the phase diagram connecting the well-known Lorentz-invariant limits of the
Bose-Hubbard model. By tracking the in-phase particle-hole symmetric oscillations of the order
parameter, we provide an answer to the long-standing question about the fate of the pure amplitude
Higgs mode away from the integer-density critical point. Furthermore, we point out that out-of-
phase symmetric oscillations in the gapless Goldstone mode are responsible for a full suppression of
the condensate density oscillations. Possible detection protocols are also discussed.

Introduction. Ultra-cold atoms in optical lattices
provide an ideal platform to explore the properties of
strongly-interacting lattice systems. A prominent exam-
ple of their capability to reproduce prototypical lattice
Hamiltonians is given by the experimental realization
of the Bose-Hubbard model [1–7]. Indeed, the super-
fluid to Mott insulator transition has been character-
ized at a very high level of accuracy, exhibiting an ex-
cellent agreement between experiments and theoretical
predictions at zero [5, 8–11] and finite temperature [12–
16]. The ground-state properties of the Bose-Hubbard
model have been thoroughly investigated through time-
of-flight imaging [5], measure of noise correlations [17]
and single-site microscopy [18]. Excitations have been
also addressed through tilting of the lattice [5], Bragg
spectroscopy [19] and lattice depth modulation [8].

A very intriguing feature of the Bose-Hubbard model is
the existence of a strongly-interacting superfluid phase.
With respect to a weakly-interacting superfluid, a clear
distinctive property of the superfluid close to the Mott
lobes is the strong particle or hole character of the
phonons. A further signature of strong correlations is
the existence of gapped modes [20–23], in contrast to
the weakly-interacting limit, where the gapless Goldstone
mode exhausts all of the spectral weight. The measure-
ment of the first gapped mode in the short wavelength
limit using Bragg spectroscopy [24] and in the large wave-
length limit using lattice modulation [25] has been re-
cently reported. When the first gapped mode consists of
a pure amplitude oscillation of the superfluid order pa-
rameter [26–32], it is granted the label of Higgs mode, in
analogy with the Higgs boson in particle physics [23].

A pure amplitude mode, decoupled from the phononic
phase mode, has been predicted to exist when the Bose-
Hubbard model is effectively described by a relativistic
O(2) field theory, since an effective particle-hole sym-
metry ensures Lorentz invariance and the resulting de-

coupling of phase and amplitude degrees of freedom
[20, 28, 33, 34]. This O(2) theory describes both the
vicinity of the critical point of the superfluid to Mott
transition at integer filling in dimensions d ≥ 2 and hard-
core bosons at half-integer filling [35]. An important issue
regards the fate of the Higgs mode away from criticality
and towards the weakly-interacting regime [23]. To the
best of our knowledge, no clear answer about this ques-
tion has been provided yet.

In this Letter, we find an emergent particle-hole sym-
metry for the first gapped mode on a curve connect-
ing two Lorentz-invariant points of the model, starting
from the tip of the insulating lobes. This result relies on
higher-energy excitations and provides an answer to the
long-standing debate about the conditions of existence
of a pure-amplitude Higgs mode in the Bose-Hubbard
model away from criticality. Moreover, we show that a
distinct particle-hole symmetry condition for the gapless
Goldstone mode produces a suppression of the conden-
sate density oscillations in proximity of the Mott lobes
and, specifically, in correspondence to the boundary be-
tween particle and hole superfluidity. We speculate that
such a suppression may be responsible for an increase
in the critical temperature of the normal to superfluid
transition.
Model and theory. We consider bosonic particles in

a d-dimensional square lattice described by the Bose-
Hubbard model

H = −J
∑
〈i,j〉

(
a†iaj + H.c.

)
+
U

2

∑
i

ni(ni− 1)−µ
∑
i

ni ,

(1)
where J is the hopping amplitude, U the on-site in-
teraction, µ the chemical potential, and 〈i, j〉 repre-
sents all pairs of nearest-neighboring sites. For large
enough dimensions, e.g. d = 3, it is appropriate to
study the excitations of the system by means of a time-
dependent Gutzwiller ansatz |ψ〉 =

∏
i

∑
n ci,n(t)|n〉i.
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FIG. 1. (a) Mean-field phase diagram of the Bose-Hubbard model in d = 3 dimensions: thick lines are the Mott lobes. Single-
particle (-hole) excitations in the Mott phase are indicated by the green (orange) arrows. Dashed, solid and dashed-dotted
grey arcs indicate the condition of particle-hole symmetry C = 0 at k ≈ 0 for the Goldstone, first and second gapped modes,
respectively. (b,c) Lowest bands for k = kx = ky = kz as a function of dJ/U for µ/U = 0.2 (b) and µ/U = 0.8 (c) (see horizontal
dotted lines in (a)). The vertical dashed line indicates the phase transition. Inset in (b): Excitation spectrum as a function of
k/π in the strongly interacting superfluid at dJ/U = 0.08 and µ/U = 0.2 (star in (a)) compared with the excitation spectrum
in the Mott phase at dJ/U = 0.04 and µ/U = 0.2 (dotted lines). In all figures, color code indicates the value of C, quantifing
the particle-hole character for each mode. Particle-hole symmetry is found when C = 0. (d) Grey dotted lines ±mµ/U are the
m-holes (or m-particles) excitation energies in the Mott phase at J = 0. Thick lines: Excitation energies ~ωk,λ/U for modes
λ = 1 . . . 4 at k = π/100 along the vertical dotted line in (a), namely as a function of µ/U for dJ/U = 0.08. The points of
particle-hole symmetry are highlighted by the red dots (see also (a)).

The coefficients ci,n(t) satisfy the equations of motion ob-
tained from the Lagrangian L[c, c∗] ≡ i~

∑
i,n c

∗
i,n∂tci,n−

〈H〉. We define ci,n(t) = [c̄n + δci,n(t)] e−iω0t [36–
38], where c̄n are the ground state parameters, ω0 de-
scribes the time dependence at equilibrium, and δci,n(t)
are the small oscillations with respect to the equilib-
rium configuration. Linearizing the equations of mo-
tion with respect to δci,n(t) and introducing the Ansatz
δci,n(t) = uk,ne

i(k·ri−ωkt) +vk,ne
−i(k·ri−ωkt), one obtains

Bogoliubov-like equations for the coefficient uk,n and
vk,n, which can be chosen to be real. To describe the ex-
citations above the ground state, we select the solutions
at positive energy ωk,λ > 0, where λ = 1, 2, . . . identifies
the different branches of the spectrum. The correspond-
ing eigenvectors satisfy ~uk,λ · ~uk,λ′ −~vk,λ ·~vk,λ′ = ε δλ,λ′ ,
with ε > 0. For practical convenience, we take ε = 1.

Given a certain observable A, an excitation λ produces
a perturbation with respect to the ground state value
δAλ = 〈A〉λ− Ā, which we consider up to linear order in
δci,n. For the order parameter ψi = 〈ai〉, this reads

δψi,λ = Uk,λei(k·ri−ωk,λt) + Vk,λe−i(k·ri−ωk,λt), (2)

where

Uk,λ =
∑
n

√
n+ 1

(
c̄nu

(λ)
k,n+1 + c̄n+1v

(λ)
k,n

)
,

Vk,λ =
∑
n

√
n+ 1

(
c̄n+1u

(λ)
k,n + c̄nv

(λ)
k,n+1

)
. (3)

The quantities |Uk,λ|2 and |Vk,λ|2 are the quasi-particle
and quasi-hole excitation strengths, respectively [37, 38].

Particle-hole symmetry. For each mode and momen-
tum, we define particle-hole symmetry the condition

|Uk,λ| = |Vk,λ|, identified by the zeros of the function
C = (|Uk,λ| − |Vk,λ|)/(|Uk,λ| + |Vk,λ|) [39]. To under-
stand the existence of lines of particle-hole symmetry,
it is helpful to recall how the excitations in the Mott
phase evolve into the phononic and gapped modes of
the strongly-interacting superfluid [22]. In the weakly-
interacting Bogoliubov regime, phonons present a strong
particle and hole admixture. In contrast, close to the
Mott lobes, the phononic excitations of the strongly-
interacting superfluid inherit the pure particle or hole
character of the Mott excitation that becomes gapless
at the transition (see Fig. 1(a)). For negative (positive)
doping with respect to integer filling, phononic excita-
tions of the strongly-interacting superfluid appear with
|Vk,1| � |Uk,1| (|Uk,1| � |Vk,1|), indicating dominant
hole (particle) character (see Fig. 1(b-c), respectively).
At negative (positive) doping, the second lowest Mott
excitation is gapped at the transition and is transformed
into the first gapped mode of the superfluid phase, which
conversely has particle (hole) character |Uk,2| � |Vk,2|
(|Vk,2| � |Uk,2|) (see Fig. 1(b-c), respectively).

It is instructive to realize that also higher excited
modes inherit their particle-hole character from un-
derlying pure m-particle and m-hole excitations (see
Fig. 1(d)). The energy crossing between such excita-
tions turn into anti-crossings due to the coupling intro-
duced by a non-vanishing order parameter in the super-
fluid phase. The dominant particle or hole character from
the underlying modes is retained, except in the vicinity
of the anti-crossing points, where hybridization leads to
a point of perfect particle-hole symmetry for each mode.
In the weakly-interacting regime all excitations become
particle-dominated. Hence, the regions of dominant hole-
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FIG. 2. (a) Flatness Fk,2 for the first gapped mode (λ = 2) as
a function of dJ/U and µ/U for k = kx = ky = kz = π/100;
the bright yellow curves are the points where this mode corre-
sponds to pure amplitude oscillation of the order parameter.
As a reference, the white lines indicate the Mott to superfluid
phase boundaries. (b) Density oscillation Nk,2 as a function
of µ/U for fixed dJ/U = 0.0858, corresponding to the tip of
the lobe. (c) As in (b) for dJ/U = 0.115. Purple to light blue
line color indicates k varying from 0 to π. Vertical dashed
lines highlight the zeros of Nk,2 at k ≈ 0 (see (a)).

character are confined in the strongly-interacting super-
fluid regime and bounded by a line of perfect particle-hole
symmetry (C = 0, see grey curves in Fig. 1(a)). This pic-
ture highlights the role played by energetically-close ex-
citations in determining the particle-hole symmetry con-
dition for the different modes. In particular, the idea
of particle-hole symmetry arising close to energy level
crossings explains why particle-hole symmetry is recov-
ered for all modes in the vicinity of the tip of the lobes
(µ/U close to half-integer values) and at very small J/U
and half-integer filling (µ/U close to integer values) (see
Fig. 1(a,d)).

In the following, we are going to discuss how in-
phase and out-of phase oscillations of the order param-
eter (namely the relative sign of Uk,λ and Vk,λ) at the
particle-hole symmetry condition determine profoundly-
different physical properties of the two lowest-lying exci-
tations [40].

Pure amplitude (Higgs) mode. A long-standing debate
has taken place about the conditions for the existence of
a gapped mode in the Bose-Hubbard model and its inter-
pretation as a pure amplitude oscillation of the superfluid
order parameter [23]. Due to this sought-after property,
the first gapped mode is often referred to as Higgs mode.
Within the linear approximation (see Eq. (2)), pure am-
plitude oscillations of the order paramenter ψi,λ are found
when the imaginary part of δψi,λ vanishes, namely when
Ik,λ = Uk,λ − Vk,λ = 0. Conversely, vanishing real part
(Rk,λ = Uk,λ + Vk,λ = 0) corresponds to pure phase
excitations of the order parameter. To quantify the am-
plitude and phase components of the oscillations of the
order parameter in any mode λ, it is useful to define the

flatness parameter

Fk,λ =
Rk,λ − Ik,λ
Rk,λ + Ik,λ

∈ [−1, 1] . (4)

A positive flatness indicates a mode with dominant am-
plitude character and a negative flatness indicates a mode
with dominant phase character.

In Fig. 2(a), we show the flatness of the first gapped
mode (λ = 2) at small momentum k ≈ 0. This mode
becomes purely amplitude-like (Fk,2 = 1) on the clear
yellow curve in the (µ/U, J/U) phase diagram. The pure
amplitude Higgs mode emerges at the tip of each Mott
lobe, where it is indeed expected to exist, but quickly
moves towards larger fillings as J/U increases and bends
back towards J/U → 0 and µ/U integer. This behaviour
confirms the expectations based on Fig. 1 and related
discussion. We stress that the initial and final point of
the curve Ik,λ = 0 are Lorentz invariant points of the
model.

Let us now define the density oscillations

δni,λ = 2Nk,λ cos(k · ri − ωk,λt), (5)

with Nk,λ =
∑
n c̄nn(u

(λ)
k,n + v

(λ)
k,n). In correspondence

of the particle-hole symmetry condition Ik,λ = 0, the
continuity equation yields Nk,λ = 0, as confirmed by our
calculations (see Fig. 2(b,c)). This property identifies the
pure amplitude character of a mode λ with an exchange
of particles between the condensate and the normal frac-
tion.

It is important to note that the pure amplitude char-
acter of the first gapped mode is obtained on slightly
different curves depending on the momentum of the ex-
citations. Moreover, the density response is significant
only in the short wavelength limit and it is suppressed
for k→ 0 (see Fig. 2(b,c)). These facts should be taken
into account when looking for the Higgs mode in possible
experiments [24].

Suppression of condensate density oscillations in the
Goldstone mode. Particle and hole excitations of equal
amplitude but opposite sign (Rk,λ = Uk,λ+Vk,λ = 0) [41]
directly imply vanishing condensate density oscillations

δρc,i,λ = δ|ψi,λ|2 = 2Pk,λ cos(k · ri − ωk,λt) , (6)

with Pk,λ = ψ̄ (Uk,λ + Vk,λ). Vanishing condensate den-
sity oscillations are found on arc-shaped lines in the phase
diagram in the vicinity of, and in particular below, each
Mott lobe (dark blue curves in Fig. 3(a)). The suppres-
sion of δρc for mode λ = 1 occurs for distinct values k on
slightly different curves, which all lie above half-integer
filling and end in the vicinity of the tip of the lobe (see
Fig. 3(b,c)). Consistently, it will never be possible to sat-
isfy the condition R = 0 in the weakly-interacting limit,
where the Goldstone mode alone exhausts the spectral
function sum-rule |Uk,1|2 − |Vk,1|2 = 1.
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FIG. 3. (a) Amplitude of the condensate density fluctuations
Pk,1 for the Goldstone mode (λ = 1) as a function of dJ/U
and µ/U for k = kx = ky = kz = π/100; Constant density
n̄ = 0.5, 0.8, 0.9, 1 contours (white lines). (b) Pk,1 as a func-
tion of µ/U for fixed J/U = 0.0858, corresponding to the tip
of the lobe. (c) As in (b) for J/U = 0.115. Purple to light
blue line color indicates k varying from 0 to π. Grey dashed
lines show the condensate density ρc in the ground state.

In the superfluid hydrodynamic regime, the conden-
sate density oscillations of the Goldstone mode at low
momenta couple only to the density oscillations δρc =
(∂ρc/∂n)Jδn. This equality has been numerically veri-
fied by independently calculating the oscillations δρc, δn
at k ≈ 0 from Eqs. (5, 6) and the quantity ∂ρc/∂n in the
ground state. Hence, the condensate density oscillations
at k ≈ 0 vanish in correspondence of the maxima and
the minima of the condensate density at constant J (see
thick purple and dashed curves in Fig. 3(b,c)).

Remarkably, the suppression of condensate density os-
cillations at k ≈ 0 occurs at the boundary between parti-
cle and hole superfluidity, usually defined as (∂µ/∂J)n =
0 [38]. Indeed, the mean-field free energy per site Ω de-
pends on the condensate density as Ω = −zJρc + . . . ,
where z = 2d is the coordination number in a hy-
percubic lattice. Using the thermodynamic relations
µ = (∂Ω/∂n)J and ρc = −(1/z)(∂Ω/∂J)n, we obtain
(∂µ/∂J)n = −z(∂ρc/∂n)J .

Particularly interesting are the maximum of conden-
sate density and the absence of condensate fluctuations
found on the lower branch of each R = 0 curve in
Fig. 3(a). This suggests the presence of a condensate that
is extremely robust against thermal fluctuations for tem-
peratures smaller than the Goldstone mode bandwidth
and, as a possible consequence, an increase of the nor-
mal to superfluid critical temperature. This conjecture
is supported by a qualitative comparison with quantum
Monte Carlo results [15] showing the critical tempera-
ture as a function of density at fixed J/U . In Ref. [15],
for small J and filling smaller than unity, a maximum
of critical temperature is found above half-integer fill-
ing, in apparent agreement with the particle-hole sym-
metry condition R = 0 found in this work. Moreover,
the fact that the maximum of the critical temperature

found in Ref. [15] is of the order of the hopping ampli-
tude, namely, according to our calculation, smaller than
the Goldstone mode bandwidth, validates an estimation
of the critical temperature based on the thermal occupa-
tion of the Goldstone mode only. In this respect, the
microscopic nature of the lowest-lying excitations and
in particular their particle-hole symmetry seems to play
a crucial role. From a broader perspective, these find-
ings may be relevant to understand the influence of Mott
physics (Mottness) on the low-temperature phase dia-
gram of cuprates [42]. Indeed, recent experiments have
shown that – among other effects [43] – at the optimal
doping corresponding to the maximum of the supercon-
ducting dome, a transition from hole to particle transport
[44] and a change in the charge transfer process [45, 46]
occur.

Discussion. The unambiguous detection of particle-
hole symmetry in the excitations of a strongly-interacting
superfluid requires to independently resolve the ampli-
tude and phase oscillations of the order parameter, or
in other words, to reconstruct the single-particle Green’s
function in the laboratory. Pioneering experiments in
this directions have been performed in the early days of
Bose-Einstein condensation with two-pulse Bragg spec-
troscopy [47, 48]. One can also consider more sophis-
ticated experimental techniques that are presently be-
ing developed, namely ARPES-like schemes [49, 50],
or higher band Bragg spectroscopy [51]. Proposals of
lattice-assisted spectroscopy to emulate a STM (Scan-
ning Tunneling Microscopy) in ultra-cold atomic setups
[52] and energy-resolved atomic scanning probes for the
density of states [53] have also been recently put for-
ward. Beyond ultracold atoms realizations, Higgs and
Goldstone modes may appear in hybrid systems cou-
pling Bose-Einstein condensates to optical cavities [54].
A more speculative possibility of quantum simulating the
collective modes in the Bose-Hubbard model is offered by
arrays of strongly-nonlinear optical or circuit-QED res-
onators [55–57], inspired by the recent realization of Mott
insulator states of light [58]. In such optical systems, the
full statistics of the quantum field is in fact directly ac-
cessible from a photoluminescence experiment [59].

Conclusions. In this Letter, we have discussed the
emergent particle-hole symmetry of the low-energy exci-
tations in the homogeneous Bose-Hubbard model. For
the Goldstone mode, particle-hole symmetry induces
a suppression of condensate density oscillations at the
boundary between hole and particle superfluidity and
a possible consequent increase of the normal to super-
fluid critical temperature. Most remarkably, particle-
hole symmetry also allows us to predict a gapped pure-
amplitude Higgs mode on a curve connecting the integer-
density critical point (tip of the lobe) and the hard-core
limit at half-integer density.

The particle-hole symmetry condition is met in the
strongly-interacting superfluid when an excitation aris-
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ing from the Mott phase with predominant hole charac-
ter acquires the predominant particle character typical
of the weakly-interacting limit. In this sense, particle-
hole symmetry relies on very general and fundamental
properties of single-particle excitations. Future studies
could be devoted to understand the impact of quantum
corrections. On one hand, the development of a quan-
tized theory for the excitations would allow one to in-
vestigate the effect of quantum and thermal fluctuations,
to address the lifetime of the different excitation modes
and to explore finite temperature physics. On the other
hand, a whole new interesting regime is expected to arise
when decreasing the dimensionality of the optical lat-
tice. In this respect, since the single-site Gutzwiller ap-
proximation used in this work is not reliable in systems
with a small coordination number, an improvement of
our theory could be given by a cluster Gutzwiller ap-
proach [25, 60], which accounts for short-range quantum
correlations also in two-dimensional lattices.
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