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The local phonon modes in a Coulomb crystal of trapped ions can represent a Hubbard system
of coupled bosons. We selectively prepare single excitations at each site and observe free hopping
of a boson between sites, mediated by the long-range Coulomb interaction between ions. We then
implement phonon blockades on targeted sites by driving a Jaynes-Cummings interaction on indi-
vidually addressed ions to couple their internal spin to the local phonon mode. The resulting dressed
states have energy splittings that can be tuned to suppress phonon hopping into the site. This new
experimental approach opens up the possibility of realizing large-scale Hubbard systems from the
bottom up with tunable interactions at the single-site level.

Trapped atomic ions are an excellent medium for quan-
tum computation and quantum simulation, acting as a
many-body system of spins with programmable and re-
configurable Ising couplings [1–3]. In this system, the
long-range spin-spin interaction is mediated by the collec-
tive motion of an ion chain and emerges over time scales
longer than the propagation time of mechanical waves or
phonons through the crystal [4, 5]. On the other hand,
at shorter timescales, such a chain represents a bosonic
system of phonon modes that describe the local motion
of individual ions. Here each local mode is defined by the
harmonic confinement of a particular ion with all other
ions pinned. In this picture, phonons hop between the
local modes due to the long-range Coulomb interaction
between ions [6–8]. This intrinsic hopping in trapped ion
crystals makes it a viable candidate for simulating many-
body systems of bosons [6, 7], boson interference [9] and
applications such as boson sampling [10].

Such a system of local oscillators can be approximated
to the lowest order of the transverse ion displacement by
the phonon Hamiltonian (h̄ = 1),

Hp =
∑

j

(ωx + ωj)a†jaj +
∑
j<k

κjk(a†jak + aja
†
k). (1)

Here the local mode frequency of each ion is expressed as
a sum of the common mode transverse trap frequency ωx

and a position-dependent frequency shift ωj experienced
by the j−th ion [6, 7]. The local mode bosonic creation
and annihilation operators are a†j and aj , respectively.
The long-range hopping term κjk = e2/(2Mωxd

3
jk) is

determined by the distance djk between ions j and k,
where e and M are the charge and mass of a single ion.

By applying external controls to the system, on-site
interactions between phonons lead to the simulation
of Hubbard models of bosons. For instance, applied
position-dependent Stark shifts can result in effective
phonon-phonon interactions [6]. Combined with phonon
hopping between sites, such a system follows the Bose-
Hubbard model. In the approach considered here, the

internal spin is coupled to the external phonon mode
by driving the spin resonance on a motion-induced side-
band transition [11]. This gives rise to nonlinear on-
site interactions between spin-phonon excitations (polari-
tons). Such a system simulates the Jaynes-Cummings-
Hubbard model, which describes an array of coupled cav-
ities [7, 8, 12–14].

In order to study the dynamics of such bosonic sys-
tems, the local phonon modes must be manipulated and
detected faster than the hopping rate. Addressing these
modes requires fields that target individual ions in space
and each local mode in frequency. Previous experiments
have observed hopping only between two sites by either
using the collective motion of ions in separate but nearby
trapping zones [15, 16] or by varying the spacing between
ions in the same trap to spatially resolve each site [17].
In contrast, the direct addressing of each local mode in
a single ion crystal circumvents such overheads and pro-
vides a complete toolbox for implementing larger bosonic
systems by simply increasing the number of ions.

In this Letter, we report the observation of free phonon
hopping in an ion chain, and study its suppression by ap-
plying targeted phonon blockades on individual sites. We
access all local motional modes along the transverse di-
rection of a static linear chain of 171Yb+ions. Phonons
are prepared and measured by driving sideband transi-
tions on each mode faster than the rate of hopping in the
chain, with an overall fidelity of 89(2)%. This is achieved
by setting the transverse confinement to be much larger
than the axial confinement of the chain, which results
in suitably low hopping rates due to both a relatively
large inter-ion distance (∼ 10 µm) and high mass of the
171Yb+ion.

A phonon blockade is implemented by resonantly driv-
ing red-sideband transitions on each site, which cou-
ple the internal spin of individually addressed ions to
their local phonon mode via a Jaynes-Cummings inter-
action. In the rotating frame of the free spin and the
transverse motional common-mode Hamiltonian (H0 =
ωHF

∑
j |e〉j〈e|j + ωx

∑
j a
†
jaj), this interaction is repre-
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Figure 1. Experimental system for observing hopping of
a single phonon excitation between local transverse motional
modes along the X-direction. (a) The local phonon frequen-
cies are represented by ωi in a frame rotating at the transverse
common mode frequency ωx, and κjk is the phonon hopping
strength between modes j and k. Phonon blockades on indi-
vidual sites (here ion 3) is implemented by driving resonant
red sideband transitions with strength Ωr

j that gives rise to
an energy splitting between the ground state |g, 0〉 and the
first excited polaritonic states |±, 1〉. (b) An experimental
sequence where each ion is prepared in the ground state of
spin and motion |g, 0〉 using Raman sideband cooling (SBC).
A single phonon is excited on ion 2 using π-pulses at the blue
sideband (πb) and carrier (π) transitions. Local phonon block-
ades are applied using resonant red sideband pulses (shown
in red). The hopping duration τ is varied to observe the dy-
namics of local phonon occupancy (0 or 1 phonon) measured
by first projecting it to the internal spin states (|g〉 or |e〉)
of each ion using red sideband π-pulses (πr) followed by the
detection of state-dependent fluorescence from each ion using
a photomultiplier tube array.

sented by the blockade Hamiltonian as

Hb =
∑

j

∆j |e〉j〈e|j +
∑

j

Ωr
j

2 (σ+
j aj + σ−j a

†
j). (2)

Here, the spin-1/2 ‘ground’ and ‘excited’ states of the
j−th ion are represented by |g〉j and |e〉j , respectively,
with energy splitting ωHF , and spin raising and lowering
operators σ+

j and σ−j . A local motional red sideband is

driven at a Rabi frequency Ωr
j and detuned from reso-

nance by ∆j .
Phonon blockades are applied on individual sites that

have ions prepared in the ground state of spin and mo-
tion |g, 0〉, where the second index denotes the local mode
phonon number. Upon applying the Jaynes-Cummings
interaction at resonance (∆j = 0), a maximal energy
splitting of |ωj ± Ωr

j/2| occurs between |g, 0〉 and the
next excited polaritonic states |±, 1〉. This energy cost
suppresses phonons from entering the targeted sites and
thereby creates a blockade (see Fig. 1a). This scheme
is analogous to implementing photon blockades using
single-atom cavity QED systems [18].

The experiment consists of a linear chain of three
171Yb+ions, each with an internal spin defined by a pair
of hyperfine ‘clock’ states as |g〉 = |F = 0,mF = 0〉
and |e〉 = |F = 1,mF = 0〉 of the 2S1/2 electronic
ground level with a hyperfine energy splitting of ωHF =
2π × 12.642812 GHz [19]. Here, F and mF denote the
quantum numbers associated with the total atomic an-
gular momentum and its projection along the quantiza-
tion axis defined by an applied magnetic field of 5.2 G.
The external motion of the trapped ions is defined by
a linear rf-Paul trap with transverse (X,Y) and axial
(Z) harmonic confinement at frequencies {ωx, ωy, ωz} =
2π × {3.10, 2.85, 0.15} MHz such that the ion chain is
aligned along Z with a distance of dj,j+1 = 10.1(2) µm
between adjacent ions. During an experiment, we excite
local phonons in the transverse modes along X, which
can then hop between the ion sites. The inherent hop-
ping rates are approximately κj,j+1 ≈ 2π × 3 kHz and
κj,j+2 ≈ κj,j+1/8, respectively. The combined effect of
the transverse (X) harmonic confinement and repulsion
between ions (determined by djk) define the position-
dependent local mode frequency shifts {ωj}. Fig. 1a
represents the local modes with frequencies {ωj} in a
frame rotating at the common mode frequency ωx.

Coherent control of the spin and motion of each ion
is implemented with stimulated Raman transitions using
a 355 nm mode-locked laser [20], where pairs of Raman
beams couple the spin of an ion to its transverse motion
[3]. A global beam illuminates the entire chain, and a
counterpropagating array of individual addressing beams
is focused to a waist of ≈ 1µm at each ion. The beat note
between the Raman beams can then be tuned to ωHF to
implement a “carrier” transition for coherent spin flips, or
tuned to ωHF ±(ωx +ωj) to drive a blue- or red-sideband
transition involving local phonon modes. The individual
addressing beams are modulated independently using a
multi-channel acousto-optic modulator [21], each chan-
nel of which is driven by a separate arbitrary waveform
generator [22]. The wave vector difference ∆k̄ between
Raman beams has a projection along both the X and Y
directions of motion. Each transverse mode can then be
addressed by tuning near their sideband transitions. In
order to spectrally resolve each local mode, we choose
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Figure 2. The evolution of local phonon occupancies with initial single-phonon excitations on ions 1, 2, and 3 as shown by
the shaded orange, green, and blue circles, respectively. In the absence of a blockade (a-c), the dynamics are governed by
the hopping strengths {κjk} and the local mode frequencies {ωj}. The corresponding dynamics in the presence of a blockade
(d-g) indicate hopping suppression, which is determined by the blockade strength {Ωr

j}. The theoretical plots are obtained by
fitting a Jaynes-Cummings Hubbard model (Hamiltonian in Eq. 1 and 2) with free parameters {Ωr

j}, {ωj} and {κjk} using all
evolution data sets collectively. Error bars represent statistical uncertainties of 2σ.

sideband Rabi frequencies Ωr
j ,Ω

b
j < |ωx − ωy|, while also

satisfying |ωj | � |ωx − ωy| to prevent crosstalk between
the modes.

A typical experimental sequence, as shown in Fig. 1b,
starts with the preparation of each ion in state |g, 0〉 by
Doppler cooling and subsequent Raman sideband cooling
of each of the transverse modes. A single phonon excita-
tion is introduced at a single site by resonantly driving
a blue-sideband and carrier π−pulse to prepare the state
|g, 1〉. In order to minimize the effect of hopping during
this process, the sideband and carrier π−pulses are kept
short (≈ 10 µs and ≈ 1 µs, respectively). Phonon block-
ades are applied to particular ions, initially prepared in
the |g, 0〉 state, by resonantly driving the red-sidebands of
their respective local modes. Finally, the single phonon
occupancy denoted by states |g, 0〉 and |g, 1〉 is measured
at each site using a red-sideband π−pulse on each ion,
which coherently projects it to spin states |g〉 and |e〉,
respectively. The spin-dependent fluorescence can then
be detected using a multi-channel photomultiplier tube,
thereby measuring a binary phonon occupancy of 0 or 1
for each site [3, 19].

Figure 2 shows the hopping dynamics. During free
hopping, a single excitation is observed to hop predomi-
nantly to the neighboring site. The extent of hopping is
indicated by the amplitude of the oscillations in phonon
occupancy. This is determined by the strength of hopping
κjk relative to the energy splitting between local modes
ωjk = ωj − ωk. We observe different hopping rates be-

Parameter Fitted value Measured value

ω12 11.58 —
ω23 7.36 —
κ12 2.90 3.27(19)
κ23 2.96 3.36(20)
Ωr

1 39.7 43.1(16)
Ωr

2 45.9 47.6(14)
Ωr

3 46.3 46.0(19)

Table 1. Observed experimental parameters relevant to
phonon hopping and blockade in units of 2π×kHz, where the
local mode energy splitting is ωjk, and the hopping rate is κjk

between ions j and k. The values obtained from fits to the
hopping data (Fig.2) are compared with those obtained from
direct measurement. The measured hopping rate is obtained
from inter-ion distances {d12, d23} = {10.1(2), 10.0(2)} µm,
where the systematic error is due to uncertainty in djk. The
measured red-sideband Rabi frequency Ωr

j is directly ob-
tained from sideband spectroscopy (see supplementary mate-
rial [30]). The local mode frequencies measured directly from
sideband spectroscopy are not shown as they suffer from large
Stark shifts, which are sensitive to variations in the alignment
of Raman beams between experimental runs [23].

tween ions 1 and 2 compared to that between 2 and 3,
which indicates an asymmetry in the local mode energy
differences, |ω12| 6= |ω23|. This is likely due to a sta-
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ble non-linearity in the transverse confinement of the ion
trap. We also note that the sign of the local mode energy
difference is critical in governing next-nearest neighbor
hopping in systems with three or more modes. This is
due to a Raman-type hopping process where appropriate
energy splittings between the local modes can facilitate
hopping between ion 1 and 3 via ion 2 (see supplementary
material [30]).

Phonon hopping is also observed in the presence of a
blockade applied on neighboring sites (Fig.2d-g). Here,
we resonantly drive on the red sideband, creating a ladder
of Jaynes-Cummings eigenstates {|g, 0〉, |±, 1〉, |±, 2〉, ...},
where |±, n〉 is a spin-phonon dressed state with polari-
tonic excitation number n (Fig.1a). Since the blockade
ion is initially in eigenstate |g, 0〉, hopping into this site
is suppressed when the energy splitting of the first ex-
cited states |±, 1〉 is much larger than the hopping rate.
This implies that when |κjk| � |Ω

r
k/2± ωjk|, hopping is

suppressed from the j−th to k−th site, where the tun-
able blockade strength is set by the red-sideband Rabi
frequency Ωr

k at the blockaded site k. For ions 2 and 3,
a higher suppression is observed compared to ions 1 and
2, where the large phonon mode splitting ω12 results in
some residual hopping despite the applied blockade (see
supplementary material [30]).

In Fig.2, we further observe nonzero phonon occupan-
cies at sites prepared in the motional ground state ow-
ing to imperfect initial sideband cooling. Based on the
non-oscillatory near-zero phonon occupancies of the hop-
ping data (Fig.2 a, c, and g for ions 3, 1, and 2, respec-
tively), we estimate average local mode phonon numbers
of {n̄1, n̄2, n̄3} = {0.09, 0.08, 0.04}. This also leads to an
imperfect preparation and measurement of state |g, 1〉,
which additionally suffers from residual phonon hopping
over the finite duration of sideband π-pulses.

We fit the hopping data to a theoretical model us-
ing the Hamiltonian presented in Eq.1 and Eq.2, with
ωjk, κjk, and Ωr

j as free parameters. The steady-state
phonon occupancy, in the absence of hopping (see Fig.3),
is used to characterize the systematic errors in the prepa-
ration and measurement of the states |g, 0〉 and |g, 1〉.
This is subsequently incorporated into all theoretical
curves in Fig.2 [24] (see supplementary material [30]).
The effect of imperfect sideband cooling is directly in-
cluded by starting from a thermal phonon distribution
with mean phonon numbers {n̄j}. Both the spin and the
motional degrees of freedom are considered in the theo-
retical simulation of the full hopping dynamics. A single
set of parameters (see Table 1) is used to fit all data
in Fig.2, which shows a very good agreement between
experimental data and the theoretical description of the
system. The hopping and blockade strengths given by
the parameter values of κjk and Ωr

j are consistent with
those measured directly from the inter-ion distance and
red-sideband spectroscopy, respectively (see supplemen-
tary Fig.S1b [30]).

Single ion

Ion 1

Ion 2

Ion 3

Figure 3. Steady phonon occupancy observed in the absence
of hopping when a single ion is prepared in state |g, 1〉 or
in a chain of three ions where each is sideband cooled and
prepared in state |g, 0〉. For the single ion experiment, a con-
stant phonon occupancy indicates negligible crosstalk with
other transverse and axial modes of the ion trap. In a three
ion chain, the near-zero phonon occupancy indicates that the
combined effect of the local mode heating rate and crosstalk
with other transverse modes (that are not sideband cooled) is
negligible. The duration of both experiments is similar to that
used to observe the hopping dynamics in Fig. 2. The prob-
abilities of detecting single phonon excitations in both cases
are used to estimate the state preparation and measurement
(SPAM) fidelity of states |g, 0〉 and |g, 1〉. Error bars showing
statistical uncertainties of 2σ are smaller than experimental
data points.

A straightforward way to improve fidelities of local
phonon operations is setting the sideband Rabi frequency
much larger than the hopping strength. In this experi-
ment, since the Raman transition drives both transverse
modes, the maximum Rabi frequency is limited by the
spacing between the modes (ωx−ωy = 2π×250)kHz. In
future experiments, this can be resolved by rotating the
two principle axes of transverse motion (X and Y) with
respect to the Raman beams such that only one mode
is excited. For multi-phonon hopping experiments, it is
also necessary to implement fast measurement of phonon
distributions (instead of single phonon occupancy) using
cascaded sideband pulses, as has been implemented on
single ions [25, 26].

The stable non-linearity in the local mode energies is
a result of non-uniform RF and DC electric fields in the
ion trap. We believe this to be due to imperfect trap
shape and alignment [27]. This can be avoided by using
a more linear ion trap, such as a state of the art surface
trap, which will also allow the system to be scaled to
larger ion crystals while maintaining uniform and locally
controllable transverse confinement.

Tunable local phonon blockades can be a useful tool in
studying energy transport in ion chains [28]. It can also,
in principle, be used in mechanically isolating pairs of
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ions in a crystal for the implementation of fast entangling
gates mediated by their local phonon modes [5, 29].
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