
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Logarithmically Slow Relaxation in Quasiperiodically Driven
Random Spin Chains

Philipp T. Dumitrescu, Romain Vasseur, and Andrew C. Potter
Phys. Rev. Lett. 120, 070602 — Published 16 February 2018

DOI: 10.1103/PhysRevLett.120.070602

http://dx.doi.org/10.1103/PhysRevLett.120.070602


Logarithmically slow relaxation in quasi-periodically driven random spin chains

Philipp T. Dumitrescu,1 Romain Vasseur,2, 3, 4 and Andrew C. Potter1

1Department of Physics, University of Texas at Austin, Austin, TX 78712, USA
2Department of Physics, University of California, Berkeley, CA 94720, USA

3Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, CA 94720, USA
4Department of Physics, University of Massachusetts, Amherst, MA 01003, USA

(Dated: January 10, 2018)

We simulate the dynamics of a disordered interacting spin-chain subject to a quasi-periodic time-
dependent drive, corresponding to a stroboscopic Fibonacci sequence of two distinct Hamiltonians.
Exploiting the recursive drive structure, we can efficiently simulate exponentially long times. After
an initial transient, the system exhibits a long-lived glassy regime characterized by a logarithmically
slow growth of entanglement and decay of correlations analogous to the dynamics at the many-body
delocalization transition. Ultimately, at long time-scales, which diverge exponentially for weak or
rapid drives, the system thermalizes to infinite temperature. The slow relaxation enables metastable
dynamical phases, exemplified by a “time quasi-crystal” in which spins exhibit persistent oscillations
with a distinct quasi-periodic pattern from that of the drive. We show that in contrast with Floquet
systems, a high-frequency expansion strictly breaks down above fourth order, and fails to produce
an effective static Hamiltonian that would capture the pre-thermal glassy relaxation.

Introduction – Interacting quantum many-body sys-
tems often exhibit chaotic dynamics that rapidly scramble
quantum information and lead to highly entangled states
whose local properties are thermal and classical [1, 2].
A dramatic exception occurs in isolated and disordered
systems where many-body localization (MBL) can arrest
thermalization, resulting in quantum coherent dynamics
at arbitrarily high energy density [3–5]. This dichotomy
naturally raises fundamental questions about when and
how a system thermalizes. What are the universal fea-
tures governing the dynamical approach to the final –
thermal or non-thermal – state? More practically, what
classes of protocols allow one to manipulate a many-body
system without rapidly scrambling its stored quantum
information?

Given their large bandwidth and dense spectrum, one
might naively expect that any persistent dynamical ma-
nipulation of an isolated, interacting quantum many-body
system leads to runaway heating to a featureless infinite-
temperature state. Indeed, random time-dependent ma-
nipulations have recently been shown to cause rapid
growth of entanglement, accompanied by universal hydro-
dynamic features [6–8]. However, this expectation is vio-
lated in time-periodically driven (Floquet) systems with
strong disorder, in which sufficiently rapid driving main-
tains MBL and indefinitely avoids heating [9–11]. Even
in the absence of disorder, rapid periodic driving leads to
long-lived pre-thermal phenomena [12–21]. Floquet-MBL
systems have been shown to exhibit remarkable dynamic
phenomena from spontaneous time-translation symmetry
breaking [22–27] and dynamical topological phases with
no equilibrium analog [22, 28–37].

The stark contrast between the behaviors under ran-
dom and periodic driving can be understood by a simple
argument: local time-dependent Hamiltonians can only
make local re-arrangements. In strongly disordered sys-

tems, such rearrangements have a non-zero energy cost
and are generically non-resonant with harmonics of the
driving frequency. This heuristic forms the basis for more
sophisticated considerations for the stability of Floquet-
MBL systems [11], which are supported by numerical
simulations [9, 10], and cold-atom experiments [38]. Us-
ing similar arguments, one can rule out the stability of
MBL to random time-dependent drives, which have con-
tinuous frequency spectra capable of resonantly inducing
arbitrary local transitions leading to thermalization.

In this paper, we consider an intermediate case between
periodic and random driving by subjecting a strongly dis-
ordered quantum many-body system to a drive with quasi-
periodic time-dependence. The quasi-periodic drive has a
dense, but sharply discontinuous frequency spectrum that
occupies a set of measure zero. A priori, it is not clear
whether the density of spectral content will drive heating
and thermalization or whether its sparsity will preserve
MBL. We find that quasi-periodic driving does eventually
lead to thermalization to a featureless infinite temper-
ature state, but only after a long time tth that grows
exponentially in the inverse driving strength and the rate
of driving. While reminiscent of pre-thermalization in
delocalized Floquet systems [12–16], the dynamics before
tth are not described by an effective finite temperature
equilibrium. Instead, this regime shows a logarithmically
slow relaxation of correlations and growth of entangle-
ment, which we will call glassy dynamics. This glassy
behavior is analogous to the critical dynamics at the tran-
sition between MBL and thermal systems in non-driven
settings [40–42]. We explore to what extent the quasi-
periodic evolution can be reduced to an effective static
Hamiltonian, connecting our study to the question of
reducibility of differential equations with quasi-periodic
coefficients [43, 44]. The glassy relaxation regime can
host new metastable dynamical phases, which we illus-
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FIG. 1. Quasi-periodically Driven Spin Chain. – Time evolution under the quasi-periodic driving sequence, with
J0 = 0, δJ = π/30, λ = 1 and varying L (markers defined in (c)). All quantities are averaged over states in the global Sz = 0
sector of the spin chain and averaged over at least 3000 disorder realizations. (a) The bi-partite entanglement Sbp(t). Inset: The
normalized entanglement Sbp/L. (b) Onsite correlation function Czz(t) on site i = L/2. This plot additionally shows (dashed
line) the case of driving an L = 150 chain in the non-interacting limit of (2); see [39]. Inset: Comparison of driving with periodic
(P), quasi-periodic (Q) and random (R) sequences of the elementary unitaries, with L = 8. The random case is averaged over 20
different random sequences, each with 100 disorder realizations. (c) Correlation function C+−(t) on site i = L/2.

trate with a quasi-periodic analog of time-translation
symmetry breaking – a “time quasi-crystal”.

Model – To address the fate of a quantum many-body
system under quasi-periodic driving, we numerically sim-
ulate spin-1/2 chains, subjected to a stroboscopic drive
consisting of a Fibonacci sequence of unitary evolutions:

Un = Un−2Un−1, (1)

for n ≥ 2. The sequence is initialized by two elementary
unitaries formed from two different static Hamiltonian
evolutions: U0 = exp (−iλH+) and U1 = exp (−iλH−),
where

H± =

L∑
i=1

hiS
z
i +

L−1∑
i=1

(J0 ± δJ)Si · Si+1. (2)

The hi are random fields drawn independently for each
site from a uniform distribution h ∈ [−2π, 2π), J0 is a
static interaction, δJ represents the strength of the quasi-
periodic driving and λ ∈ [0, 1] is the characteristic driving
time-scale. We will focus on the regime |J0 ± δJ | . 1.7,
where H± as static Hamiltonians would be MBL [45]. As
such, they are separately described by emergent local
integrals of motion (LIOM) with definite Sz value [46].
Unless otherwise noted, we will take J0 = 0. An appealing
feature of the recursive nature of the drive is that it
enables simulation of exponentially long Fibonacci times
tn = Fn+1 ∼ ϕn+1 with only n unitary multiplications;
here ϕ = (1 +

√
5)/2 is the golden ratio. This enables us

to simulate the long-time physics, limited only by machine
precision.

Results – We focus on three observables: the z-
component of spin Czz(t) = 4〈Szi (t)Szi (0)〉, whose to-
tal value is conserved by the evolution, and whose local
dynamics are related to spin-transport, the transverse
spin-fluctuations C+−(t) = 4〈|S+

i (t)S−
i (0)|〉, which en-

codes the dephasing of quantum superpositions of up and
down spins, and the bi-partite (half-system) entanglement
entropy Sbp(t).

Before discussing the results, we summarize the behav-
ior of these quantities in static MBL, periodically driven
(Floquet) MBL, and thermalizing systems. In a static or
Floquet-MBL system, Czz(t) tends to a non-zero constant
at long times, indicating the absence of spin-transport and
emergent conservation laws that produce infinite mem-
ory of the initial spin configuration [9, 10, 46, 47]. The
transverse fluctuations, C+−(t) decay as a power law in
time from dephasing due to classical interactions among
the local conserved quantities [48]. This dephasing also
produces a logarithmically slow growth of entanglement
Sbp(t) ∼ log t [49–51]. On the other hand, in strongly
thermal or randomly driven systems, the non-zero spin
conductivity and chaotic scrambling leads to an expo-
nential decay of correlation functions Czz, C+− ∼ e−t/tth
and a linear growth in Sbp(t) ∼ t [52, 53]. Finally, a
clean delocalized system subject to rapid periodic driving
exhibits a pre-thermalization regime, in which the system
initially equilibrates with respect to an effective Hamilto-
nian at finite temperature. Pre-thermalization persist up
to a time exponentially long in the driving frequency [12–
15], after which the system heats to a featureless infinite
temperature state.

Figure 1 shows Czz, C+−, and Sbp for quasi-periodic
driving, in a quench from an initial product state. These
observables are averaged over initial states and disorder
realizations. We observe three distinct regimes: First,
there is a short-time transient regime in which there
is no distinction between periodic, quasi-periodic and
random driving (Fig. 1b inset). Next, there is a long-lived
glassy relaxation regime where Sbp grows and Czz decays
logarithmically slowly. Finally, after a time-scale tth that
is exponentially long for weak or rapid driving, the system
ultimately heats up to infinite temperature with a non-
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FIG. 2. Thermalization time tth. – Thermalization time
extracted from the crossing of Sbp/L, between pairs of L
(6, 8), (8, 10), (10, 12). (a) As a function of 1/δJ for λ = 1/2π, 1
and (b) as a function of λ for δJ = π/20, π/5. Error-bars are
linear estimates in Fibonacci time; dashed lines are fits of form
log tn ∼ 1/λ, 1/δJ to the (10, 12) crossing.

zero rate, signaled by linear growth of entanglement and
rapid decay of correlations. Ultimately, Sbp will saturate
to its thermal value and Czz, C+− decay to zero.

The behavior of this quasi-periodic system is markedly
distinct from the other scenarios mentioned above, as con-
trasted in the inset of Fig. 1b. Similar to and MBL system,
C+− shows aperiodic oscillations that decay slowly. Un-
like an MBL system, however, Czz does not saturate to
a non-zero value. Taken together, these imply that the
glassy relaxation regime does not possess LIOM. Nonethe-
less, it does not exhibit the rapid decay characteristic of
a thermal system.

There are two ways we can identify the thermalization
time tth: as the time where Czz curves of different L
separate from each other after the logarithmic decay or
as the time where the normalized entanglement Sbp/L
cross at a single point as a function of Lt (Fig. 1a inset).
These two ways of extracting tth follow each other closely
and allow us to extract the parametric dependence of tth
on δJ and λ (Fig. 2) [54]. At small λ and δJ we find
an asymptotic dependance which is consistent with tth ∼
e1/λ, tth ∼ e1/δJ , implying an anomalously slow dephasing
and decay over an extremely long time-scales. At larger
λ, δJ there may deviations from this form. In this respect,
the logarithmic decay is reminiscent of the long-lived
pre-thermal regime of non-MBL Floquet systems [12–16].
However, the entanglement growth in this region is slower
than linear and consistent with logarithmic growth, which
would not be the case of a system equilibrating to an
effective finite temperature and pre-thermal Hamiltonian.
We note that such logarithmic decay is observed at the
phase transition between MBL and thermal phases [40–
42]; here, we see this critical-like behavior without fine-
tuning.

It is interesting to compare these results to those of
a non-interacting analog of (2) (dashed line in Fig. 1b,
for detailed comparison see [39]). The non-interacting
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FIG. 3. Magnus Expansion. – (a) Onsite correlation
function Czz(t) for L = 8, J0 = 0, δJ = π/5 and different λ
compared to that obtained by the Magnus expansion Hamil-
tonian at third-order. (b) Initial time at which Czz(t) of the
Magnus expansion deviates by more than 10−4 from the data.

system also exhibits a slow decay regime, but in this case
there is no cross-over to fast thermalization (tth = +∞).
This suggests that, despite the absence of local conserved
quantities, the long lived glassy relaxation regime in the
interacting case is nonetheless governed by the dynamics
of emergent single-particle-like degrees of freedom.

(Ir)reducibility of the quasi-periodic drive – High-
frequency expansions provide a useful tool for understand-
ing pre-thermalization behavior in Floquet systems. They
enable the computation of an effective static pre-thermal
Hamiltonian and the expansion breakdown at long times
indicates the onset of thermalization. Here, we attempt
to develop a generic expansion of the many-body time-
evolution operator organized in powers of λ – effectively
a Magnus expansion – taking advantage of the special
self-similar structure of the Fibonacci drive. Technical
details are given in the Supplemental Material [39].

We can analytically construct a recursive Magnus ex-
pansion for Ωn = logUn, using the local deflation rule
structure of quasiperiodic sequences [55, 56]. We can gen-
erate Un+1 from Un by replacing U0 → U1 and U1 → U0U1

in the product defining Un. We expand Ωn onto a basis
of nested commutators and construct and solve difference
equations for the coefficients in this expansion, order-by-
order in the degree k of the commutator basis. Up to
degree two:

Ωn = Fn−1Ω0 + FnΩ1 + 1
2 {(−1)n + Fn−2} [Ω0,Ω1] .

Explicit expressions for degrees k = 3, 4 are given in the
Supplemental Material [39]. In order to assign an effective
static Hamiltonian interpretation, the asymptotic form
for all coefficients need to be ∼ ϕn, as above. However, for
k ≥ 4, the asymptotic behavior is ∼ ϕ(k−2)n. Therefore,
the time where the non-Hamiltonian evolution dominates
becomes increasingly short tn ∼ λ−(k−1)/(k−3). We note
that this breakdown is fundamentally different from the
breakdown of thermalization in the Floquet-Magnus case
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for periodic driving, which is due to a lack of convergence
of the expansion.

Despite this, we find that truncating the expansion at
k = 3 gives a Hamiltonian evolution which reproduces
that data at small λ remarkably well, with the exception
of rare anomalous disorder configurations. Indeed, the
time where this expansion deviates from the data scales
with λ−5, much later than the expected λ−3 (Fig. 3). In
no case, however, does the Magnus expansion capture
the anomalous logarithmic decay of Czz or growth of Sbp
for t < tth, suggesting these are inherently dynamical
phenomena not governed by a static Hamiltonian, i.e. not
governed by an effective conserved (quasi)-energy.
Fibonacci time quasi-crystal – The existence of an
exponentially long lived quasi-MBL regime, with only log-
arithmically slow decay, raises the prospect of transient
phases unique to quasi-periodically driven systems. These
are analogous to metastable phases in pre-thermal Flo-
quet settings, but with the important distinction that the
quasi-periodically driven system does not require cooling
to observe quantum coherent behavior. To illustrate this
possibility, we now construct a model that exhibits the
quasi-periodic analog of discrete time-translation break-
ing symmetry [22–27] – a “time quasi-crystal” (TQC).
The model uses the Fibonacci sequence of (1), but with
elementary unitaries

U0 = e−iθ
∑

i S
x
i , U1 = e−iλ

∑
i(JiS

z
i S

z
i+1+h

z
iS

z
i +h

x
i S

x
i ). (3)

This model is closely inspired by the periodic version
introduced in [22, 24].

Consider the ideal case of (3), where θ = π, hxi = 0 and
random Ji, h

z
i . Then U0 ∼

∏
i S

x
i ≡ X applies a perfect,

global spin-flip, while U1 is made of only Sz operators.
A simple Sz-product state would merely acquire a phase
under U1 and flip under U0. The time-evolution of a
specific spin 〈Szi (t)Szi (0)〉 exhibits an oscillating quasi-
periodic pattern that is sharply distinct from the driving
pattern. An elegant way to capture this difference is
to view the quasi-periodic sequence as a projection of a
1d strip cutting through a regular 2d square lattice at
an irrational angle (see [39]). The TQC spin response
corresponds to a projection from a 2d lattice having a
doubled unit cell compared to that for the drive.

Alternatively, we can directly compare the Fourier
spectrum of the spin response compared to that of the
drive [55, 56]. For this, it is convenient to interpret U0

in (1) as arising from an instantaneous pulse, so that
we can write the evolution in terms of a Hamiltonian
with quasi-periodic delta-function “kicking”: H(t) =

H1 +
∑M
m=1 δ (t− tm)H0, where tm = bϕmc and M is

the largest integer such that tM ≤ t. In the ideal limit
θ = π, hxi = 0, the correlation function would satisfy

dCzz(t)/dt = 2
∑M
m=1(−1)mδ (t− tm). The spectrum of

the spin-response is shifted compared to the drive (see
Fig. 4 and Supplemental Material [39]). The distinction
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FIG. 4. Time Quasi-Crystal. – (a) TEBD data of a
single spin in a spin-1/2 chain subjected to drive (3) with U0

occuring instantaneously. Parameters are L = 60, λ = 1, and
θ = π − 0.1 as well as random variables drawn from uniform
distributions J ∈ [2, 8], hz

i ∈ [0, 2], hx
i ∈ [0, 0.6]. We show a

single disorder realization. (b) Fourier spectra of the quasi-
periodic (QP) drive pattern, of the ideal TQC pattern and of
the TEBD data. (c) Magnetization at Fibonacci times, for
ideal (θ = π) and non-ideal (θ = π−0.1) pulse, shows period-3
oscillations characteristic of the TQC.

between the spin-response and drive patterns is even sim-
pler if we consider stroboscopically measuring Czz(t) at
Fibonacci times tn = Fn. At these times, the initial spins
have been flipped Fn−1 mod 2 times from their initial
state. Since Fk mod 2 form a repeating pattern with
period 3; the TQC is characterized by persistent period-3
oscillations in Fibonacci time.

These aspects also generalize straightforwardly to other
time quasi-crystal phases. For example, we may replace
the Ising spins (Z2) by N -state clock spins (ZN ) in U1

and replace Sx by the operator that increments the clock
spins in U0 of (3). In Fibonacci time, the spins would
oscillate with the Pisano period π(N); for N = 2, 3, 4, 5,
π(N) = 3, 8, 6, 20. While the emergence of quasi-periodic
correlations that have a different pattern from the drive
can occur in ideally driven single spins [57], this is special
to fine-tuned drivings. In the many-body set-up (3), the
interactions give phase rigidity even away from the ideal
limit θ = π, as for a Floquet time-crystal [25].

For θ 6= π or hx 6= 0, the model becomes non-integrable
and we lose analytic control. Figure 4 shows Czz(t) from
time-evolving block decimation (TEBD) [58–60] for sys-
tem size L = 60 starting from a product state. The
TEBD calculations were done with Trotter step 0.01λ,
keeping the discarded weight below 10−7 throughout the
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time evolution. Away from the ideal limit, the results
largely track the ideal oscillations, but we clearly see the
overall logarithmic decay in the quasi-periodic oscillations
due to the quasi-MBL nature as discussed in the previous
sections. In the Heisenberg chain (2) discussed above,
the glassy relaxation was smoothly connected to the non-
interacting limit. It is intriguing that this behavior is
again observed in a system that is unconnected to any free
fermion limit due to the longitudinal fields. This again
suggests a possible description in terms of an emergent
set of effectively single-particle, though non-conserved,
degrees of freedom.

Despite that the system eventually thermalizes, for
moderately small λ the decay is sufficiently slow to per-
mit many period-3 oscillations in Fibonacci time. This
is a fundamentally different type of approximate non-
equilibrium order than previously discussed for the cases
of pre-thermal order in Floquet systems [12–16], which
require cooling to an effective prethermal ground-state.

Beyond this quasi-periodic generalization of a Floquet
time-crystal, the slow relaxation in the long-lived regime
of glassy relaxation opens the door to more exotic quan-
tum dynamical behavior such as long lived quasi-periodic
topological phenomena. Investigating this intriguing pos-
sibility, and developing a systematic theoretical framework
to characterize such metastable quantum phases will be
an important challenge for future work.
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