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Characterizing out-of-equilibrium many-body dynamics is a complex but crucial task for quantum
applications and understanding fundamental phenomena. A central question is the role of localiza-
tion in quenching thermalization in many-body systems, and whether such localization survives in
the presence of interactions. Probing this question in real systems necessitates the development
of an experimentally measurable metric that can distinguish between different types of localiza-
tion. While it is known that the localized phase of interacting systems (many-body localization,
MBL) exhibits a long-time logarithmic growth in entanglement entropy that distinguishes it from
the noninteracting case of Anderson localization (AL), entanglement entropy is difficult to measure
experimentally. Here, we present a novel correlation metric, capable of distinguishing MBL from AL
in high-temperature spin systems. We demonstrate the use of this metric to detect localization in a
natural solid-state spin system using nuclear magnetic resonance (NMR). We engineer the natural
Hamiltonian to controllably introduce disorder and interactions, and observe the emergence of lo-
calization. In particular, while our correlation metric saturates for AL, it slowly keeps increasing for
MBL, demonstrating analogous features to entanglement entropy as we show in simulations. Our
results show that our NMR techniques, akin to measuring out-of-time correlations, are well suited
for studying localization in spin systems.

Anderson first demonstrated that single particle wave
functions can become exponentially localized in the pres-
ence of disorder [1]. Whether this localization [2–4] sur-
vives in the presence of interactions has received much
attention in recent years [5–10]. Numerical evidence in
spin chains indicates that the system may be in the MBL
or ergodic phase depending on the relative strength of in-
teraction and disorder [11–13]. MBL can be distinguished
from its noninteracting counterpart (AL) via the dynam-
ics of entanglement entropy [14–17]. Entanglement en-
tropy (EE) is however difficult to evaluate experimen-
tally, and so far has only been measured on systems with
small number of particles [18]. One way to circumvent
this challenge, is to measure entanglement witnesses such
as the quantum Fisher information, which can serve as a
lower bound for entanglement entropy [8] for pure states.

A remarkable feature about the MBL phase is that it
is predicted to persist at high and even infinite tempera-
ture [19], where states are highly mixed and there is little
to no entanglement present. How does one characterize
the MBL phase experimentally in such a system? Here
we introduce a novel metric capable of distinguishing
MBL from AL in the non-equilibrium dynamics of highly
mixed states, and provide both numerical and experimen-
tal evidence in support. Our approach requires no local
control, and relies only on collective rotations and mea-
surements, in contrast to recently proposed metrics [20]
that also detect the spread of correlations but require
single-spin addressability. The experimental system is
composed of nuclear spins in a natural crystal coupled by
the magnetic dipolar interaction, which can be mapped
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FIG. 1. Quantum many-body correlations grow from an ini-
tial localized state, but are restricted to a finite size by dis-
order. The average correlation length Lc, which measures
the spread of the correlations, o saturates at the localization
length ξ in the case of AL, but grows logarithmically with
time in the MBL regime.

with high-fidelity to an ensemble of 1D, nearest-neighbor
coupled spin chains [21, 22]. We exploit Hamiltonian
engineering techniques to selectively introduce and tune
both the interaction strength and the degree of disorder
in the system, and measure the growth of many-spin cor-
relations in both the AL and MBL regimes.

We consider a linear chain of L spins initially at equilib-
rium at high temperature (β → 0 ) in a strong magnetic
field aligned along the ẑ direction. Under these condi-
tions, the thermal equilibrium state of the system can be
expressed as ρeq = (11 − ε

∑
j S

j
z)/2

L (with S the spin-
1/2 operator) to first order in ε = βωL � 1, where ωL
is the spin Zeeman energy and ~ = 1. Any spin-spin in-
teractions are assumed to be negligible compared to the
Zeeman energy, so that the natural interaction Hamilto-
nian commutes with the thermal equilibrium state.
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If the effective interaction HamiltonianH of the system
is changed suddenly (a rapid quench), the system is no
longer in equilibrium and evolves into a many-body corre-
lated state. The presence of disorder hinders the growth
of correlations and can give rise to localized states, char-
acterized by an exponentially decreasing probability of
correlations outside a typical localization length, ξ, as
shown in Figure 1. Inspired by this picture, we define a
metric of localization that measures the average length
over which correlations have developed.

We can generically write the high-temperature time-
evolved density matrix as

ρ(t) =
11

2L
− ε
√
L

2L

L∑
k=1

ζk∑
s=1

bsk(t)Bsk, (1)

where Bsk are operators composed of tensor products of
k Pauli matrices and L−k identity operators. Here ζk is
the number of configurations with exactly k non-identity
Pauli operators. To quantify localization we define the
average correlation length

Lc =
∑L
k=1 kfk, (2)

where fk =
∑ζk
s=1[bsk]2 is the contribution of all pos-

sible spin correlations with Hamming weight k (with∑L
k=1 fk = 1). In the initial equilibrium state ρeq there

are no spin correlations and Lc = 1. In the absence of
disorder, we expect Lc to grow and eventually saturate
at a value dependent on L. Introducing disorder leads
to a quantitatively different behavior. When the system
is noninteracting, AL leads to a coherent suppression of
many-spin correlations and Lc is bound by the localiza-
tion length ξ. When interactions are present, disorder
is unable to completely suppress the correlation growth.
The slow growth of Lc in the presence of interactions is
the key feature that enables Lc to distinguish between
AL and MBL for mixed states.

Consider an effective spin Hamiltonian of the form

H =u+v
2

∑L−1
j=1 JS

j
xS

j+1
x + v−u

2

∑L−1
j=1 JS

j
yS

j+1
y

+ g
∑L
j=1 hjS

j
z − v

∑L−1
j=1 JS

j
zS

j+1
z , (3)

The first two terms represent an integrable Hamiltonian,
as via a Jordan-Wigner transformation [23] they map to a
free fermionic Hamiltonian. The third term corresponds
to on-site disorder, and the last term introduces inter-
actions between fermions (see Sec. 2 in the Supplemen-
tal Material (SM) [url] which includes Refs. [50–66] ).
Tuning the relative strength of these parameters allows
us to explore different physical regimes. Figure 2 shows
that both EE (S = −Tr[ρL log ρL], where ρL is the re-
duced density matrix of the left half of the chain) and the
correlation length Lc display a characteristic logarithmic
growth in time [15] when the system enters the MBL
phase, and saturate when the system is non-interacting.
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FIG. 2. Simulations of spin correlation and entangle-
ment entropy. We compare EE of the reduced half chain
(dashed lines, right axis) with the correlation length Lc (solid
lines, left axis) and the approximate Lc obtained from mea-
suring the MQC (dotted). Simulations using exact diagonal-
ization were performed for L = 8 and with a uniform random
noise ghj/u ∈ [−8, 8] for 960 realizations. The similar be-
haviors (including logarithmic growth) confirm that Lc is as
good an indicator of MBL as the more commonly used EE.
Here EE is renormalized to vary between 0 and 1, in order to
account the mixed initial state of the system (Sec. 6 of SM).

These numerical simulations suggest that Lc can be used
as an alternative to EE to distinguish MBL from AL for
mixed states (Sec. 6.3 of the SM). Lc and EE are related
for more general states that arise from evolution under
other spin Hamiltonians.

Measuring Lc for a generic many-body state is chal-
lenging, since it is usually difficult to directly measure
many-body correlations to determine fk, and the num-
ber of configurations ζk is exponential in k and L. Here
we show how to extract Lc in our experiments, with a
method that can be extended to other systems.

Our experimental system consists of a single crystal of
fluorapatite [Ca5(PO4)3F] placed in a strong magnetic
field (7 Tesla, ωL = 283 MHz). The 19F spin-1/2 nuclei
in the hexagonal fluorapatite crystal form linear chains
along the c-axis, interrupted only by rare defects, each
surrounded by six other chains. When the c-axis is ori-
ented parallel to the external magnetic field, the cross-
chain couplings is 40 times weaker than nearest-neighbor,
intra-chain couplings (J = −33 krad/sec). The system
can then be treated approximately as an ensemble of
identical spin chains [22, 24, 25]. In addition, each F spin
is surrounded by three 31P spin-1/2 nuclei. The spins
interact via the natural dipolar Hamiltonian, Hnat =
1
2

∑
j<k Jjk(2SjzS

k
z−SjxSkx−SjySky )+

∑
j,κ hjκS

j
zs
κ
z , where

Sjα = σjα/2 (α = x, y, z) are spin-1/2 operators of the j-th
F spin and sκz of the κ-th P spin.

At room temperature the P spins are in an equal mix-
ture of mz =±1/2 states. This allows us to replace the
heteronuclear interactions by

∑
j hjS

j
z , where hj is now

a random variable representing the disordered field seen
locally by each 19F. The dipolar coupling between 31P nu-
clei is about 27 times smaller than that between 19F nu-
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clei, and can be neglected on our experiment timescales.
The random local field thus appears quasi-static in
these experiments, resulting in an effective Hamiltonian
Heff

nat = J
2

∑
j(2S

j
zS

j+1
z − SjxSj+1

x − SjySj+1
y ) +

∑
j hjS

j
z ,

where we kept nearest-neighbor couplings only.

While the high-temperature thermal equilibrium state
does not evolve under this Hamiltonian, we can quench
the system to a different effective Hamiltonian of the
form of Equation (3) by periodically applying a radiofre-
quency pulse sequence in resonance with the F spins.
This method (called Coherent Averaging [26]) has been
long used in the NMR literature for spectroscopy and
condensed matter studies. Here we further push these
techniques to engineer the broad class of Floquet (pe-
riodic) Hamiltonians in Eq. (3), with tunable disorder
and interactions. Changing the sequences of pulses and
delays in a period we can experimentally adjust the pa-
rameters u, v, and g, and explore various regimes of in-
terest (Sec. 3.2 in the SM shows the experimental pulse
sequence). In addition, we are also able to reverse the
arrow of time, a tool that allows measuring out-of-time
ordered correlations (OTOC).

In order to calculate the correlation length Lc we need
the coefficients fk, which we can determine experimen-
tally by borrowing from well-known NMR techniques
that approximate the number of correlated spins by their
quantum coherence number [27]. Multiple quantum co-
herence (MQC) intensities of order q describe the con-
tribution of terms |ma〉〈m′a| in the density matrix such
that ma−m′a = q, with ma the collective Sa eigenvalue
(typically a = z). MQC intensities Iq can be measured
by relying on their distinct behavior under collective ro-
tations [27–29]. The distribution of Iq has been tradi-
tionally used to approximate the average number of cor-
related spins in 3D spin networks [30–32]. While this ap-
proximation fails in 1D systems, we find instead a practi-
cal experimental protocol to exactly measure Lc for non-
interacting systems. The protocol still yields a very good
approximation for disordered interacting (MBL) systems.

We first note that in non-interacting systems, for sim-
ple initial states such as ρeq, the density operator at time
t, when expanded in the form of Equation 1 has a partic-
ularly simple form. The number of configurations with
k Pauli operators, ζk ∝ L − k, as all many-spin corre-
lations are of the form Bsk ∼ Ssa(

∏k+s−2
l=s+1 S

l
z)S

k+s−1
b ±

Ssb (
∏k+s−2
l=s+1 S

l
z)S

k+s−1
a , where the end spins Sa,b are ei-

ther Sx or Sy. This structure is key to extracting the fk
coefficients, as correlations with different k will exhibit
distinct MQC intensities. To further distinguish the four
different end-spin combinations, we first decompose ρ(t)
into four corresponding orthogonal blocks, using time-
reversal and phase cycling [33], and then measure the
MQC intensities encoded in the x axis for each jth block,
Ijq (see Sec. 5 in the SM). The resulting MQC intensities
can be related to fk in Eq. (2) by a linear transformation,
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FIG. 3. Experimental measurements of correlations in
interacting spin chains. We plot in log-linear scale the Lc

dynamics for varying interaction strengths v, in the presence
of disorder . Data are for u=0.24 and g=0.12. After an initial
growth of correlations, Lc saturates for the non-interacting
systems, while it shows a slow growth in the presence of in-
teractions, indicating MBL. In contrast, the integrable case
(gray, v=0, g=0) shows more pronounced growth, although
it is still limited by experimental imperfections.

fk=
∑
jqM

(j)
kq I

j
q , and from the extracted fk we can calcu-

late Lc. While this protocol was designed for the Hamil-
tonian we investigated, similar strategies will be available
for other integrable Hamiltonians, with a proper choice
of the axes along which the MQC are measured.

As long as the interaction term is not too large (and
disorder large enough) we expect the evolved density ma-
trix state to still mostly contain the simpler many-spin
correlations described above, thus allowing to extract an
approximate Lc. The validity of this argument can be
seen from the simulation results shown in Fig. 2, where
the approximated Lc (calculated from the MQC) contin-
ues to closely track the exact Lc and the entanglement
entropy in the MBL phase.

Combining Hamiltonian engineering with MQC read-
out, we can explore the behavior of both noninteracting
and interacting models in the presence of disorder. Fig. 3
shows the experimentally extracted Lc for our interact-
ing model, as compared to the non-interacting case. For
the noninteracting Hamiltonian (v = 0), in the absence
of disorder we expect Lc to increase linearly, consistent
with the Lieb-Robinson bound for short-ranged Hamil-
tonians [34]. In the thermodynamic limit L→∞ and at
large times uJt�1, Lc grows with a velocity V =2uJ/π.
In the presence of disorder, instead, we expect Lc to ini-
tially increase, as spins correlate within the localization
length, and to saturate at long times due to AL. This
experimental evidence proves that our Hamiltonian en-
gineering technique can indeed introduce disorder in the
system evolution. The figure also shows the behavior of
Lc as the strength of the interactions (v in Eq. 3) are var-
ied, for a fixed disorder strength. The experiments clearly
reveal the emergence of slow growth in Lc when interac-
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FIG. 4. Experimental correlations in noninteract-
ing spin chains. Correlation length Lc for various strength
∝ g of disordered transverse fields, with u = 0.24 and v = 0
(Eq. 3). Errorbars are determined from the noise in the free
induction decay. The lines are numerical simulations using 6
(solid), 10 (dotted) and 40 (dashed) spins respectively, aver-
aged over 126 disorder realizations.

tions are added, the hallmark feature of MBL [15, 35].

The strength and limitations of our experimental sys-
tem are evident when we consider the change in Lc as
a function of disorder strength for the non-interacting
case (Fig. 4). Increasing disorder is clearly seen to result
in a saturation of Lc, consistent with AL. The lines are
numerical simulations, showing that experimental results
are consistent with theoretical predictions. Discrepancies
at higher Lc are likely due to experimental imperfections.

Control imperfection (such as pulse errors and rf tran-
sients) and decoherence due to the open system dynam-
ics preferentially affect the higher quantum coherences of
large spin correlations, leading to an apparent saturation
of Lc. The same experimental imperfections make it even
more difficult to observe the ergodic phase, where interac-
tions dominate disorder, ideally leading to a fast growth
in time of the correlation length, which is more heavily
affected by the observed saturation. While high-fidelity
experimental control of complex many-body states is key
for any experimental metric of complexity, in some cases,
it is still possible to distinguish between the saturation
of Lc due to experimental limitations at long time and
its quenching due to increasing disorder using additional
symmetry properties of the MQCs (see Sec. 5 in SM).

Note that in the experiments we can probe this dy-
namics only for relatively short times, where the physi-
cal system is a good approximation to the ideal model, as
verified elsewhere [21]. Indeed, while the average chain
length (determined by crystal defects) is much longer
than the 20-25 spins explored on these timescales, we
have long-range couplings (∝1/r3) in a 3D crystal where
each spin chain interacts with 6 surrounding chains. In
addition, pulse imperfections and higher orders in the
Magnus expansion can lead to unwanted terms in the

engineered Hamiltonian. We note that rapidly applied
rf pulses do not give rise to heating [36], while the un-
avoidable interaction with the environment, dominated
by other spins in the system, leads to decoherence (de-
phasing) that affects equally the interacting and non-
interacting regimes. We kept the experimental time short
to minimize these effects, and observe the localization
regime, before the experimentally unavoidable thermal-
ization can appear (indeed the time is also much shorter
than the relaxation time T1 ≈ 0.8 s and the P dynamics).

We can obtain a more intuitive understanding of why
our experimental method for extracting the correlation
length from MQC is quite robust. While measuring Lc
via the MQC is exact in the integrable case, this method
can still be applied to MBL systems due to their emergent
integrability characterized by a complete set of local in-
tegrals of motions (LIOM) [16, 17]. While the number of
possible configurations ζk in these LIOMs is exponential,
only a fraction of them (corresponding to small k) have
significant weights – a consequence of area law entangle-
ment in MBL systems [37, 38]. Then, when applied to
MBL systems, the MQC method approximately counts
the Lc of these interacting LIOMs, while still exhibiting
the same logarithmic growth as entanglement entropy.
We can further understand our measurement in terms of
out-of-time ordered correlations (OTOC) [39–41]. As ex-
plained in detail in Sec. 4 of the SM, in order to extract
the MQC intensities we effectively measure the quantities

Sφ(t) =Tr
[
ρeqΦ†(t)ρeqΦ(t)

]
, (4)

with Φ(t) = U(t)eiφ
∑

j S
j
xU†(t).

While we can only measure OTOC for collective opera-
tors on the whole system, such as Φ, these OTOC still
give some information about the spreading or localiza-
tion of correlations, since ρeq is a sum of local operators.
The information is made more accurate as we consider
an average of several OTOC for different Φ(0) operators,
even if we cannot measure a whole basis of a subsystem as
required to extract the EE [42, 43]. It will be interesting
to experimentally measure other OTOC in our system,
as OTOC has been studied in the context of information
scrambling in black holes [44, 45] and disordered spin
systems [39, 41, 46–49].

In conclusion, we introduced a novel metric for lo-
calization, able to distinguish between many-body and
single-particle localization. The correlation metric can
be measured experimentally, with the only requirement
of collective rotations and measurements, by extending
MQC techniques developed in NMR (which can as well
be applied to many other physical systems [40]). We
also reveal an interesting relationship between the pro-
tocol for measuring the correlation length and the mea-
surement of OTOC, thus further confirming its ability
to measure the logarithmic growth of entanglement as-
sociated with MBL. Thanks to our control techniques,
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we were able to explore a broad range of interesting be-
haviors in this solid-state spin system. In particular, we
observed, for the first time, many-body localization in
a natural spin system associated with a single crystal at
high temperature. We note that while we interpreted our
results mostly based on a simplified model (1D, nearest-
neighbour couplings), the real system is more complex
due to long-range interactions and a 3D structure. It will
be thus interesting to use the tools developed in this work
to study subtler properties of localization when these ef-
fects are highlighted by the experimental scheme.
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[12] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. X

5, 041047 (2015).
[13] D. J. Luitz, N. Laflorencie, and F. Alet, Phys. Rev. B

91, 081103 (2015).
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