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Manipulation and quantification of quantum resources are fundamental problems in quantum
physics. In the asymptotic limit, coherence distillation and dilution have been proposed by ma-
nipulating infinite identical copies of states. In the non-asymptotic setting, finite data-size effects
emerge, and the practically relevant problem of coherence manipulation using finite resources has
been left open. This letter establishes the one-shot theory of coherence dilution, which involves
converting maximally coherent states into an arbitrary quantum state using maximally incoherent
operations, dephasing-covariant incoherent operations, incoherent operations, or strictly incoherent
operations. We introduce several coherence monotones with concrete operational interpretations
that estimate the one-shot coherence cost — the minimum amount of maximally coherent states
needed for faithful coherence dilution. Furthermore, we derive the asymptotic coherence dilution
results with maximally incoherent operations, incoherent operations, and strictly incoherent opera-
tions as special cases. Our result can be applied in the analyses of quantum information processing
tasks that exploit coherence as resources, such as quantum key distribution and random number
generation.

Quantum coherence is a fundamental property that
can emerge within any quantum system. With respect
to some physically preferable reference frame [1–3], such
as the energy levels of an atom or a selected measurement
basis, coherence empowers the ability of many quantum
information tasks, including cryptography [4], metrology
[5], and randomness generation [6, 7]. Furthermore, co-
herence is a widespread resource playing important roles
in biological systems [8, 9] and small-scale thermodynam-
ics [10–14].

Various efforts have been devoted to building a re-
source framework of coherence [15–17]. In general, a
resource theory is defined by a set of free states and a cor-
responding set of free operations that preserve the free
states. States that are not free are said to possess re-
source, and various measures can be constructed to quan-
tify the amount of resource in a given state. For exam-
ple, in the resource theory of entanglement [18–20], free
states and free operations are defined by separable states,
local operation and classical communication (LOCC), re-
spectively. Entanglement measures include the relative
entropy of entanglement [21] and entanglement of forma-
tion [18].

In the resource theory of coherence [15, 16], free or
incoherent states are those that are diagonal in a priori
fixed computational basis; free or incoherent operations
are some specified classes of physically realizable opera-
tions that act invariantly on the set of incoherent states.
Different definitions of incoherent operations have been
studied due to different motivations. In this work, we
focus on the maximally incoherent operation (MIO) pro-
posed by Åberg [15], the dephasing-covariant incoherent
operations (DIO) proposed independently by Chitambar,
Gour [22] and Marvian, Spekkens [23], the incoherent op-
eration (IO) proposed by Baumgratz et al. [16], and the

strictly incoherent operation (SIO) proposed by Winter
and Yang [24]. Coherence measures include the relative
entropy of coherence [16], coherence of formation [6, 15],
robustness of coherence [25], etc. We refer to Ref. [17]
for a comprehensive review of recent developments of the
resource theory of coherence.

Investigating state transformations via free operations
is of paramount importance in a resource theory. In par-
ticular, many efforts have been devoted to understand
the interconversion between a given state ρ and copies
of a canonical unit resource |Ψ〉 [26] via free operations.
Specifically, the dilution problem is to convert unit re-
source |Ψ〉 to the target state ρ, and the distillation prob-
lem is the reverse process. In the asymptotic case, where
infinite copies of ρ and |Ψ〉 are provided, the dilution
rate (or coherence cost) and the distillable rate describe
the maximal proportion of ρ and |Ψ〉 that can be ob-
tained on average, respectively. In entanglement theory,
the well-known distillable entanglement [27] and entan-
glement cost [28] of a state measure its optimal rate of
asymptotic distillation and dilution, respectively. The
asymptotic distillation and dilution of coherence under
IO and SIO have been investigated by Winter and Yang
[24] who proved that the distillable coherence is given by
the relative entropy of coherence and that the coherence
cost is given by the coherence of formation.

The processes of asymptotic distillation and dilution
are studied under two crucial assumptions: (i) a source
is available that prepares independent and identically dis-
tributed (i.i.d.) copies of the same state, (ii) an un-
bounded number of copies of this states can be gener-
ated. These assumptions overlook possible correlations
between different state preparations and they become un-
reasonable when only a finite supply of states are avail-
able. In order to relax the two assumptions, it is nec-
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essary to consider the most general scenario, i.e., the
one-shot scenario, where the conversion is from a gen-
eral initial state to a general final state. Such a sce-
nario reflects realistic experimental setups where we only
manipulate finite and correlated states. In many quan-
tum information tasks, such as quantum key distribution
[29], device independent processing [30, 31], thermody-
namics [10–14, 32–35], quantum channel capacity [36–
39], and general resource theory [40], some analyses have
already been conducted in the one-shot scenario. In par-
ticular, one-shot entanglement distillation and dilution
have been investigated under LOCC [41–43], as well as
non-entangling maps and operations that generate negli-
gible amount of entanglement [44]. In thermodynamics,
conversion under thermal operations is known only for
qubit states [11]. For coherence, the necessary and suffi-
cient conditions for single-copy state transformations are
known only for pure states [24, 45, 46] and single qubit
mixed states [22, 47]. Generally, one-shot coherence dis-
tillation and dilution of general quantum states have been
left as open problems [17, 24].

In this letter, we consider one-shot coherence dilution
under four widely accepted incoherent operations: MIO,
DIO, IO, and SIO. We first review the coherence frame-
work by Åberg [15] and Baumgratz et al. [16]. Then, we
introduce several coherence monotones for different in-
coherent operations. In addition, we define the one-shot
coherence cost in dilution process, and explicitly show
that the optimal one-shot coherence cost is characterized
by the introduced coherence monotones. Moreover, when
applying our results to the asymptotic i.i.d. scenario, we
obtain the coherence cost under MIO and show that it
equals to the relative entropy of coherence. Similarly, we
also derive the asymptotic coherence cost under IO and
SIO and show that it equals to the coherence of forma-
tion, which is consistent with the results in [24]. Our
main results are summarized in Table I. We introduce
and discuss the results in details below and provide the
proofs in Supplementary Materials.

TABLE I. Coherence dilution in the one-shot and asymptotic
scenarios with MIO, DIO, IO, and SIO. The two columns
“one-shot” and “asymptotic” denote the coherence measures
in the one-shot and asymptotic scenarios, respectively.

Operation One-shot Asymptotic

MIO Cε
MIO ≈ Cε

max C∞MIO = Cr

DIO Cε
DIO ≈ Cε

∆,max C∞DIO = Cr

IO Cε
IO = Cε

0 C∞IO = Cf

SIO Cε
SIO = Cε

0 C∞SIO = Cf

Framework.—Considering a computational basis I =
{|i〉}d−1

i=0 in a d-dimensional Hilbert space Hd, incoherent

states are defined as δ =
∑d−1
i=0 pi |i〉 〈i|, where {pi} is a

probability distribution. We denote the set of incoherent
states as I. The maximally incoherent operations (MIO)

introduced in Ref. [15] are physical or completely posi-
tive trace preserving (CPTP) maps Λ such that Λ(δ) ∈ I,
∀δ ∈ I. A CPTP map Λ is called a dephasing-covariant
incoherent operation (DIO) if Λ(∆(ρ)) = ∆(Λ(ρ)) for all
ρ [22, 23]. Here, ∆(ρ) =

∑
i |i〉 〈i| 〈i| ρ |i〉 is the dephas-

ing channel, and clearly DIO is a subset of MIO. An-
other subset of MIO are the incoherent operations (IO)
[16] which are CPTP maps that admit a Kraus operator
representation Λ(ρ) =

∑
nKnρK

†
n with the {Kn} being

“incoherent-preserving” operators, that is KnδK
†
n/pn ∈

I for all n and all δ ∈ I. Here pn = Tr
[
KnρK

†
n

]
is

the probability of obtaining the nth outcome. In gen-
eral, when Λ(ρ) =

∑
nKnρK

†
n is an incoherent opera-

tion, the Kraus operator can always be represented as
Kn =

∑
i ci |f(i)〉 〈i|, where f is a function on the in-

dex set and ci ∈ [0, 1] [24]. Finally, strictly incoherent
operations (SIO) are CPTP maps admitting a Kraus op-
erator representation Λ(ρ) =

∑
nKnρK

†
n such that both

{Kn} and {K†n} are incoherent-preserving operators [24].
The relations among different incoherent operations are
shown in Fig. 1.

MIO

IO

SIO

DIO

O

FIG. 1. Comparison among different incoherent operations.
The largest set O contains all possible physical operations.

Associated with each of these operational classes is a
family of monotone functions. A real-valued function
C(ρ) is called a MIO (DIO) monotone if C(ρ) ≥ C(Λ(ρ))
whenever Λ is MIO (DIO). Since IO and SIO are de-
fined in terms of Kraus operator representations, it is
natural to modify the monotonicity condition to aver-
age post-measurement values. That is, C(ρ) is called
an IO (SIO) monotone if C(ρ) ≥

∑
n pnC(KnρnK

†
n/pn)

whenever {Kn} ({Kn} and also {K†n}) are incoherent-
preserving Kraus operators.

Following the notions of monotonicity defined above, a
coherence measure for a class of operations O is defined
as a real valued function C(ρ) that satisfies the following
requirements,

(C1) C(ρ) ≥ 0 with equality if and only if ρ ∈ I;

(C2) C(ρ) is a monotone for operational class O;

(C3) Convexity: coherence cannot increase under mixing
states, i.e., C (

∑
n pnρn) ≤

∑
n pnC(ρn).



3

When a function satisfies conditions (C1) and (C2), we
call it a coherence monotone for operational class O. Al-
though a coherence monotone may not satisfy (C3), it
can still play important roles in tasks that process coher-
ence.

Coherence monotones— In the following, we first in-
troduce three coherence monotones of quantum states
defined on Hilbert space Hd. To do so, we make
use of the generalized quantum α-Rényi divergence,

D̃α(ρ||σ) = 1
α−1 log2

(
Tr
[(
σ

1−α
2α ρσ

1−α
2α

)α])
, where α ∈

(0, 1)∪ (1,∞) [48]. For α = 0, 1,∞, the Rényi divergence
is defined by taking the limit of α→ 0, 1,∞, respectively.
Then, quantum coherence measures can be defined by
Cα(ρ) = minδ∈S D̃α(ρ||δ), where S ⊂ D(Hd) and D(Hd)
denotes the set of density matrices in Hd [49]. First we
let S = I. In the limit of α → 1, we recover the rela-
tive entropy of coherence Cr(ρ) = minδ∈I S(ρ||δ). Here,
S(ρ||δ) = Tr[ρ log2 ρ] − Tr[ρ log2 δ] is the quantum rela-
tive entropy and the minimization is over all incoherent
states. When α→∞, we have the max-relative entropy
Dmax(ρ||σ) = limα→∞ D̃α(ρ||σ) = log2 min{λ|ρ ≤ λσ}.
Then we introduce our first coherence monotone by

Cmax(ρ) = min
δ∈I

Dmax(ρ||δ) (1)

With the properties of the max-relative entropy
Dmax(ρ||σ) [50], we can verify that Cmax(ρ) satisfies
(C1)—(C2). In addition, we show that it is quasi-convex,
i.e., Cmax (

∑
i piρi) ≤ maxi Cmax(ρi).

Theorem 1.—The quantity Cmax(ρ) is a coherence
monotone under MIO [47] and it is quasi-convex.

We next consider a different set

Aρ = { 1
t ((1 + t)∆(ρ)− ρ) | t > 0, (1 + t)∆(ρ)− ρ ≥ 0}

and let Aρ denote its closure. In particular, ∆(ρ) ∈ Aρ
by taking the limit t → ∞. Analogous to Eq. (1),
we define C∆,max = minσ∈Aρ Dmax(ρ||σ). The quantity

C∆,max was originally introduced in Ref. [47] and shown
to have the simplified form

C∆,max(ρ) = log2 min{λ | ρ ≤ λ∆(ρ)}. (2)

Theorem 2.—C∆,max is a coherence monotone under
DIO [47] and it is quasi-convex.

Alternatively, another way of defining coherence mea-
sure is via the convex-roof construction. For instance,
the coherence of formation Cf (ρ) can be defined by
Cf (ρ) ≡ min{pj ,|ψj〉}

∑
j pjS(∆(|ψj〉 〈ψj |)) [6, 15]. Here,

S(ρ) = −Tr[ρ log2 ρ] is the Von-Neumann entropy, and
the minimization is over all possible pure-state decom-
positions of ρ =

∑
j pj |ψj〉 〈ψj |. Now, suppose |ψj〉 =∑d−1

i=0 aij |i〉 and denote Tj to be the number of nonzero
elements in {a0j , · · · , ad−1,j}. We introduce our third
coherence monotone C0(ρ),

C0(ρ) = min
{pj ,|ψj〉}

max
j

log2 Tj . (3)

Under this convex-roof construction, we show that C0(ρ)
is a coherence monotone. Nevertheless, it does not satisfy
the convexity requirement (C3).

Theorem 3.—C0(ρ) is a coherence monotone under IO
and it violates the convexity requirement (C3).

One-shot dilution.— With the three coherence mono-
tones, we are now ready to consider the process of coher-
ence dilution which converts maximally coherent states
into a target state. The canonical maximally coherent
state of dimension M is given by |ΨM 〉 = 1√

M

∑M−1
i=0 |i〉

[16]. One-shot coherence cost measures the minimal
length M such that |ΨM 〉 can be converted into a tar-
get state ρ via incoherent operations within some finite
error. Based on different definitions of incoherent opera-
tions, we define different one-shot coherence costs.

Definition 1.— Let O ∈ {MIO,DIO, IO, SIO} de-
note a class of incoherent operations. Then for a given
state ρ and ε ≥ 0, the one-shot coherence cost under O
is defined by

CεO(ρ) = min
Λ∈O
{log2M |F (ρ,Λ(ΨM )) ≥ 1− ε}, (4)

where F (ρ, σ) =
(
Tr
[√√

ρσ
√
ρ
])2

is the fidelity measure
between two states ρ and σ.

In the definition, there is a “smoothing” parameter ε
in the dilution process, which is also known as the failure
probability in cryptography [51]. Instead of obtaining
the exact state ρ, we allow the final state to be deviated
no more than ε from ρ, where the deviation is measured
in fidelity. Specifically, when ε = 0, it becomes the case
of perfect state conversion.

As shown in Fig. 1, since SIO ⊂ IO ⊂ MIO and
SIO ⊂ DIO ⊂ MIO, we have CεMIO(ρ) ≤ CεIO(ρ) ≤
CεSIO(ρ) and CεMIO(ρ) ≤ CεDIO(ρ) ≤ CεSIO(ρ) in general.
However, IO and DIO are incomparable operations and
we thus cannot derive a relationship between CεIO(ρ) and
CεDIO(ρ) directly from the definitions. Nevertheless, the
hierarchy CεDIO(ρ) ≤ CεIO(ρ) can be established in the
asymptotic case according to the following theorems.

To characterize coherence cost with certain error ε, we
apply a smoothing to a general coherence measure C(ρ)
by minimizing over states ρ′ that satisfy F (ρ, ρ′) ≥ 1−ε,

Cε(ρ) = min
ρ′:F (ρ,ρ′)≥1−ε

C(ρ′). (5)

We show that the one-shot coherence cost under MIO is
bounded by the smoothed coherence measure Cεmax(ρ),

Theorem 4.—For any state ρ and ε ≥ 0

Cεmax(ρ) ≤ CεMIO(ρ) ≤ Cεmax(ρ) + 1. (6)

Similarily, the one-shot coherence cost using DIO is
bounded by the smoothed coherence measure Cε∆,max(ρ),

Theorem 5.—For any state ρ and ε ≥ 0,

Cε∆,max(ρ) ≤ CεDIO(ρ) ≤ Cε∆,max(ρ) + 1. (7)
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Finally, the one-shot coherence cost under IO and SIO
is exactly characterized by the smoothed coherence mea-
sure Cε0(ρ),

Theorem 6.—For any state ρ and ε ≥ 0

CεIO(ρ) = CεSIO(ρ) = Cε0(ρ). (8)

The main proof idea of the theorems is to firstly prove the
lower bound of the one-shot coherence cost by exploiting
the monotonicity property of coherence measures. Then,
the next step is to explicitly construct an incoherent oper-
ation such that this lower bound is saturated. We leave
the detailed proofs and the explicit transformations in
Supplementary Materials.

Asymptotic case.— Our one-shot coherence cost results
hold for any state and any smooth parameter ε. As a
special case, we can consider the asymptotic coherence
dilution with an infinitely large number of i.i.d. target
states. We define the regularized coherence cost by tak-
ing the limit n→∞ and ε→ 0+:

C∞O (ρ) = lim
ε→0+

lim
n→∞

1

n
CεO(ρ⊗n). (9)

where O ∈ {MIO, IO, SIO,DIO}. Following the results
of one-shot coherence dilution, we obtain coherence cost
in the asymptotic case.

Theorem 7 —For any state ρ, the asymptotic coherence
cost under MIO is quantified by

C∞MIO(ρ) = Cr(ρ). (10)

Combining this with the work of Winter and Yang [24],
we see that both the asymptotic coherence cost under
MIO and the the distillable coherence under IO is given
by the relative entropy of coherence Cr(ρ). Since MIO is
more powerful than IO, it follows that the distillable co-
herence under MIO is also characterized by Cr(ρ). One
can also see this by noting that the converse proof for dis-
tillable coherence given in Ref. [24] also holds for MIO.
Thus, coherence is asymptotically reversible under MIO.
This is a slight strengthening of the general result pre-
sented in Ref. [52] which implies reversibility by MIO
when an asymptotically small amount of coherence can
be generated.

Interestingly, we find that C∞DIO(ρ) = Cr(ρ), which
is rather surprising since C0

MIO(ρ) ≤ C0
DIO(ρ), with the

inequality being strict in many cases. Yet, evidently MIO
and DIO yield the same coherence dilution rate in the
asymptotic case, i.e.,

Cr(ρ) = lim
ε→0+

lim
n→∞

1

n
CεMIO(ρ⊗n)

= lim
ε→0+

lim
n→∞

1

n
CεDIO(ρ⊗n).

(11)

The proof of this fact will be presented in a separate
paper as it employs techniques quite different from the
ones used in this work.

Theorem 8 —For any state ρ, the asymptotic coherence
cost under IO and SIO is quantified by

C∞IO(ρ) = C∞SIO(ρ) = Cf (ρ). (12)

The asymptotic coherence dilution under IO and SIO has
been investigated by Winter and Yang [24]. The coher-
ence cost is characterized by the coherence of formation
Cf (ρ), which is consistent with our result. Note that, al-
though the problems of one-shot and asymptotic coher-
ence dilutions are similar, the methods are different. Our
method holds for any state and any ε while the method
by Winter and Yang holds only for infinite copies of the
same state and the limit with ε→ 0+. Furthermore, the
definition in Eq. (9) can also be generalized to

C∞,εO (ρ) = lim
n→∞

1

n
CεO(ρ⊗n) ε ∈ (0, 1). (13)

By applying the property of the quantum asymptotic
equipartition [29, 53, 54], we may also obtain the same
results in Theorem 7, 8. It would be an interesting future
work to propose the generalized asymptotic coherence di-
lution with a finite smooth parameter ε and relate it to
the corresponding coherence monotone.

Discussion.— Our work solves the open problem of
one-shot coherence dilution [17] and derive the conven-
tional coherence dilution formula in the asymptotic limit.
Our results also indicate that coherence is asymptotically
reversible under MIO and DIO. According to recent in-
vestigations of the resource theory of coherence [17], our
results also shed light on the role of coherence as a re-
source in quantum information processing tasks like ran-
dom number generation [6, 7] and cryptography [4].

In the asymptotic scenario, the distillable coherence
and coherence cost are additive, i.e., Cf (ρ1 ⊗ ρ2) =
Cf (ρ1) +Cf (ρ2) and Cr(ρ1⊗ ρ2) = Cr(ρ1) +Cr(ρ2) [24].
In contrast, the proposed one-shot coherence monotones
do not satisfy the additivity property in general. For ex-
ample, one can show that Cε0(ρ⊗n) 6= Cε0(ρ)+Cε0(ρ⊗n−1)
when n→∞ and ε→ 0+. Furthermore, given ε ≥ ε1 +
ε2, we can derive that Cε0(ρ1 ⊗ ρ2) ≤ Cε10 (ρ1) + Cε20 (ρ2).
The inequality also holds for Cεmax and Cε∆,max with
proofs shown in Sec. VIII of Supplementary Materials.
An interesting future direction is to study general and
tight additive inequalities for these coherence monotones.

Another interesting perspective is to quantify the one-
shot coherence distillation under different incoherent op-
erations. The essential problem is to find the conversion
from a general mixed state to the maximally coherent
state. Some interesting results have been obtained [55]
but the general results are still remained to be solved.
Furthermore, due to the strong similarity, we also expect
that our result can shed light on the one-shot coherence
conversion under thermal operations in the thermody-
namic scenario, which has been partially solved only for
qubits recently [11].
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