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Disordered fiber networks are ubiquitous in a broad range of natural (e.g., cytoskeleton) and
manmade (e.g., aerogels) materials. In this paper, we discuss the emergence of topological floppy
edge modes in two-dimensional fiber networks as a result of deformation or active driving. It is
known that a network of straight fibers exhibits bulk floppy modes which only bend the fibers
without stretching them. We find that, interestingly, with a perturbation in geometry, these bulk
modes evolve into edge modes. We introduce a topological index for these edge modes and discuss
their implications in biology.

Introduction – Recent theoretical advances in applying
concepts of topological states of matter to mechanical
systems have led to the burgeoning new field of “topologi-
cal mechanics”, where nontrivial topologies of the phonon
bands give rise to exotic mechanical and acoustic prop-
erties [1–20].

Among many different types of topological mechani-
cal systems, a particularly interesting class consists of
“Maxwell lattices”, which are central-force lattices with
average coordination number 〈z〉 = 2d where d is the spa-
tial dimension, and are thus on the verge of mechanical
instability [2, 3, 16–20]. Maxwell lattices host topolog-
ically protected phonon edge modes at zero frequency
(floppy modes). These edge modes are governed by the
topology of the equilibrium and compatibility matrices
of the lattice, which in turn, are governed by the lattice
geometry [2]. A simple two-dimensional (2D) example of
Maxwell lattice, the deformed kagome lattice, as shown
in Fig. 1, exhibits different phases where the topological
structure changes and the floppy modes localize at differ-
ent edges [17]. In particular, what drives the topological
transition here is a soft strain that changes the lattice
geometry, where all bonds remain the same length and
only the bond angles change. At the topological tran-
sition, bonds form straight lines and floppy modes pen-
etrate infinitely deep into the bulk, whereas in the two
phases below and above the transition, the floppy modes
localize at opposite edges. In the topologically nontrivial
phase all floppy modes localize on the top edge, leav-
ing the bottom edge rigid. This physics of the Maxwell
lattices makes them both an interesting topic for theo-
retical study [21–27] and good candidates for the design
of novel mechanical metamaterials where the edges can
change stiffness by orders of magnitude reversibly [17].

Most existing studies of topological mechanics are
based on periodic lattices, with only few exceptions [28,
29]. In general, topological order is robust against dis-
order, because topological attributes are integer valued
and remain invariant upon the addition of disorder until
they jump to a different integer value. This robustness
has been demonstrated in various periodic lattice systems
with weak disorder. It is thus an intriguing question to
ask: can topological edge floppy modes exist in disor-

dered systems that are completely off-lattice?
In this paper, we study floppy edge modes in disor-

dered fiber networks which are not periodic in space
(Fig. 1b-d). Fiber networks are ubiquitous in nature,
taking the form of cell cytoskeleton and extra-cellular ma-
trix, and in manmade materials, taking the form of fiber
hydrogels and aerogels, felt, etc., and exhibit fascinat-
ing physics [30–41]. Using both analytic theory and nu-
merical simulation, we show that topological edge floppy
modes arise in these disordered fiber networks when they
are driven away from the simple geometry where all fibers
are straight, and these edge floppy modes lead to strongly
asymmetric mechanical properties at opposite ends of the
fiber network. These topological edge modes may have
interesting consequences in a wide range of problems,
such as cell cytoskeleton under active driving and the
design of smart fiber materials.
Model and Results – We choose the “Mikado model”,
which is a completely off lattice 2D fiber network
model [30, 31], and modify it for our study of topologi-
cal edge modes. The original Mikado model consists of
straight fibers randomly placed on a 2D plane, with all
crossing points being free hinges (Fig. 1b). The Hamil-
tonian of a Mikado model can be written as

H =

Nfiber∑
i=1

ni−1∑
m=1

ki,m
2

(
|~Ri,m − ~Ri,m+1| − `i,m

)2

+

Nfiber∑
i=1

ni−1∑
m=2

κi,m
2

(∆θi,m)
2
, (1)

where there are Nfiber fibers labeled by i, each has ni
crosslinks labeled by m, and ~Ri,m is the (displaced) po-
sition of the m-th crosslink on the i-th fiber. The first
term denotes central force stretching energy of each fiber
segment (bond) between neighboring crosslinks (sites)
m,m + 1 along each fiber i, with stretching spring con-
stant ki,m and rest length `i,m. The second term denotes
bending energy of the fiber and ∆θi,m = θi,m − θi,m−1 is
the angle change between the two segments meeting at
crosslink m along fiber i (here θi,m denotes the orienta-
tion of the m-th segment on fiber i) with bending spring
constant κi,m.

In typical fiber networks composed of long slender fil-
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aments, the bending stiffness is much smaller compared
to the stretching stiffness [κ/(k`20) � 1 where `0 is the
characteristic mesh size, see discussion in the Supplemen-
tary Information (SI)]. For our discussion of topological
mechanics we first ignore bending stiffness and treat all
fiber segments as central-force springs (κi,m = 0). Later
we use numerical simulations to verify that the essential
conclusion of the asymmetric mechanical properties due
to edge modes still holds in presence of small bending
stiffness.

The original Mikado model displays an interesting
property: all floppy modes are bulk modes. This can
be seen in the following analysis. The total number
of crosslinks is Ns =

∑Nfiber

i=1 ni/2 (each crosslink is
shared by two fibers) and the total number of bonds is

Nc =
∑Nfiber

i=1 (ni − 1) (dangling ends are removed since
they don’t contribute to mechanical stability). The num-
ber of zero modes is thus equal to the number of fibers
N0 = Nsd − Nc = Nfiber. A straightforward decom-
position of the Nfiber zero modes is that each fiber car-
ries one zero mode corresponding to the longitudinal dis-
placement of that fiber, while keeping all other fibers
intact (the fiber segments crossing the displaced fiber is
stretched only to second order in the mode), as shown in
Fig. 1b [34].

The original Mikado network can be seen as a disor-
dered analog of the critical state of the deformed kagome
lattice, in the sense that they both have straight fila-
ments which carry bulk floppy modes (Fig. 1a-b). The
deformed kagome lattice exhibits phases (related by a
soft strain from the critical state) with different topolo-
gies where the floppy modes localize at different edges.
Can the Mikado network also exhibit such topological
transitions? The answer is yes.

Because what drives the topological transition and
the localization of the floppy modes in the deformed
kagome lattice is the change of lattice geometry (in-
duced by the soft strain equivalent to the ~q = 0 bulk
floppy mode), it is natural to consider following bulk
floppy modes the original Mikado model and exam-
ine their effect on mode localization. As shown in
Fig. 1c, we perturb the Mikado model to create a new
ground state as follows: one arbitrarily chosen “cen-
tral fiber”, c, is longitudinally displaced by a small

amount U
(0)
c (each crosslink on this fiber displaced by

~u
(0)
c,m = U

(0)
c (

sin(θc+Θc,m)
sin Θc,m

,− cos(θc+Θc,m)
sin Θc,m

) where θc is the

angle of the central fiber, and Θc,m is the intersecting
angle between the crossing fiber at crosslink m and the
central fiber) following one floppy mode of the original
Mikado model. We choose the convention that if the
fiber is pulled in the direction pointing from crosslink 1
to nc on the central fiber (so crosslink nc is the “head”

of motion), U
(0)
c > 0, and vice versa, and we ignore the

resulting stress (which is second order in U
(0)
c ). This ge-

ometric perturbation leads us to a new model which we

FIG. 1. (a) A deformed kagome lattice in its critical state
(middle, large) between two phases with different topologies
in their phonon bands (left and right, small). Blue and red
arrows show a pair of floppy modes, under periodic boundary
condition in the horizontal (x) direction and open boundary
condition in the y direction. The pair of floppy modes are
on the top and bottom edges respectively in the topologi-
cally trivial phase (left). The red mode becomes a bulk mode
at the transition (middle, where the cyan stripes show the
straight lines of bonds) and shift to the top edge in the topo-
logical phase (right). (b) An example of an original Mikado
network, showing one bulk floppy mode along fiber i (red ar-
rows). This floppy mode is characterized by a constant longi-
tudinal projection of displacements along the fiber Ui (green
arrows), and the displacement vectors of the crosslinkes ~ui,m

(red arrows) are perpendicular to the crossing fiber so they
are only stretched to second order. Dangling ends are shown
as dashed lines and are ignored in the analysis. (c) An exam-
ple of an original Mikado network, showing the bulk floppy
mode on the central fiber which is used to obtain the modified
Mikado model (red and green arrows showing ~u

(0)
c,m and U

(0)
c

respectively, magnified by 50 times). The zoomed in figure

below shows details of the displacements (~u
(0)
c,m magnified by

10 times) in a local area [boxed in (a)] that leads to the mod-
ified Mikado model. (d) Floppy mode localized on the tail

of the central fiber in the modified Mikado model (~u
(0)
c,m too

small to be visible, red and green arrows denote ~uc,m, Uc,m

of the floppy mode respectively). (e) Projection of the floppy
mode to each segment Uc,m [green arrows in (d)] exponen-
tially decrease from tail (m = 1) to head (m = nc) on the
central fiber.

name “modified Mikado model”.

We then study mechanical properties of the modified
Mikado model using both analytical and numerical calcu-
lations. The analytic method we adopt to study the mod-
ified Mikado network is based on a transfer matrix that
propagates floppy modes through crosslinks in the net-
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FIG. 2. (a) Illustration of the transfer matrix [Eq. (3)] ap-
plying on a crosslink. (b) Displacements propagation (along
arrows) and order of magnitude when applying the transfer
matrix on the network with boundary condition that only
crosslink 1 of the central fiber has input U (large blue arrows
for O(1), smaller arrows for higher order in ∆ and red denotes
flow back to the central fiber). (c) Asymmetric edge stiffness
at two ends of the central fiber. We perform numerical simu-
lations to measure local stiffness klocal against point force on
two ends of the central fiber, in modified Mikado models with
different U (0). We show results for both networks with no
bending stiffness κ = 0 and with bending stiffness (controlled
by fiber thickness a in unit of characteristic mesh size `0,
and we normalize klocal using characteristic spring constant
of one segment k̃). For more details see the SI. In all cases,
the head is significantly more stiff than the tail. (d) Mikado
network under active driving from active crosslinks (marked
with arrows) on the central fiber. The direction of driving is
determined by the chirality of the crossing fibers, such that
the motors actively move to the “+” end. If all crossing fibers
have correlated chirality such that their “+” ends are on the
left, from Eq. (4), we find that the floppy mode on the central
fiber exponentially localizes to the left.

work. Transfer matrix methods have been broadly used
in various fields, including wave propagation, quantum
mechanics and statistical mechanics, to solve problems
by decomposing systems into layers of lower dimensions.
The way we apply transfer matrix on the Mikado network
is similar as in Ref. [25] with the important difference that
in Ref. [25] floppy modes propagate through rows of a pe-
riodic lattice, whereas here floppy modes are propagated
through individual crosslinks in the disordered network.

When a fiber is not straight, floppy modes longitudi-
nal projection is different from segment to segment in the
modified Mikado model. Relating floppy-mode displace-
ment of each crosslink {~ui,m} to its longitudinal projec-
tion on each fiber segment {Ui,m}, we obtain an equation
at each crosslink (Fig. 2a)

M

(
Ui,m−1

Uj,n−1

)
=

(
Ui,m
Uj,n

)
, (2)

with the transfer matrix at this crosslink (which is labeled

m-th on fiber i and n-th on fiber j) is

M =

(
sin(Θi,m−∆θi,m)

sin Θi,m

sin ∆θi,m
sin Θi,m

− sin ∆θj,n
sin Θi,m

sin(Θi,m+∆θj,n)
sin Θi,m

)
, (3)

where Θi,m ≡ θj,n−1 − θi,m−1. This equation serves as a
“transfer matrix” for segment displacements at crosslinks
for an arbitrary floppy mode in the modified Mikado
model. For any input of boundary condition in terms
of segment displacements on one end of each fiber (re-
member N0 = Nfiber), we can calculate the floppy mode
displacements throughout the whole network.

With this transfer matrix, we can study general floppy
modes in the modified Mikado model. We are partic-
ularly interested in what happens to the floppy mode
that was a bulk mode on the central fiber in the origi-
nal Mikado model (Fig. 1bc). To do this, we take the
boundary condition that the first segment of every fiber
is given to be Ui,1 = 0 if i 6= c and Ui,1 = U if i = c,
i.e., only the central fiber has a longitudinal displace-
ment input at segment 1, while all other fibers are held
fixed at their segment 1. We then use the transfer matrix
[Eq. (2)] to calculate the floppy displacement on the rest
of the network. Figure 1d shows an example of such ex-
act calculation, where the resulting floppy mode becomes
localized at the tail of the central fiber.

To characterize such floppy mode localization we take
the following perturbative expansion. Because fibers in

the modified Mikado model are close to straight (U
(0)
c is

small), all ∆θi,m are small, which permits a perturbative
expansion of the transfer matrix at small bending angles
(represented generally by ∆) and allows further analysis.
Following the central fiber, we find that at each crosslink
(for more details see the SI),

Uc,m = [1−∆θc,m cot Θc,m +O(∆θ2
c,m)]Uc,m−1 (4)

where we have used the fact that the input Uj,n−1 from
the fiber which crosses the central fiber is either 0 (from
boundary condition), or of O(∆2) or higher (from other
crosslinks on the central fiber itself through a loop), as
shown in Fig. 2b. Such higher order displacements are
visible in Fig. 1c where we used the full transfer matrix
[Eq. (3)]. This small ∆ expansion also requires that the
crossing angles Θc,m are not too small (so cot Θc,m does
not diverge), a condition naturally satisfied in most fiber
networks from excluded volume repulsion.

Equation (4) governs the growth and decay of the
floppy mode along the central fiber. If cot Θ > 0, we
have Uc,m > (<)Uc,m−1 if ∆θi,m < (>)0 [corresponding
to the central fiber bending up (down) at this crosslink],
and vice versa (see SI for examples of the geometry). This
is a very general geometric rule for edge floppy modes,
which applies to the case of topological kagome lattices as
well (e.g., following the two families of vertical lines up in
Fig. 1c one finds that U increases on both). This rule can
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also be used to design new ordered or disordered struc-
tures which exhibit tailored distribution of floppy modes
(see example in SI). The advantage of designs based on
disordered structures, compared to existing designs of pe-
riodic topological mechanical metamaterials, is that they
may be easier to implement in systems such as foams and
aerogels where one just need to introduce certain asym-
metry in the disordered structure to obtain floppy edge
modes, without the need to precisely control the struc-
ture to ensure periodicity.

Now with the general rule of floppy mode evolution at
each crosslink, we come back to the question of where the
floppy mode localizes in the modified Mikado model. It is
straightforward to see that individually at each crosslink

(holding all other crosslinks fixed) the displacement U
(0)
c,m

points to the direction of floppy mode Uc,m decreasing

along the central fiber if U
(0)
c > 0 (central fiber pulled

towards crosslink nc), and vice versa. However, we need
to rigorously prove that in the modified Mikado model
where all crosslinks are displaced along the central fiber
at the same time, the disorder averaged (denoted by
〈. . .〉) growth rate of the floppy mode

〈λ〉 ≡ 1−
〈
Uc,m+1

Uc,m

〉
(5)

is positive when U
(0)
c > 0 and negative when U

(0)
c < 0

(floppy mode localizes on tail), given the condition that
different fibers have uncorrelated orientations. The proof
is included in the SI.

The analytic theory discussed above is at zero bend-
ing stiffness, but our numerical results show that when
bending stiffness is introduced, the asymmetric stiffness
is still significant (Fig. 2c).

The floppy edge modes we find in these disordered fiber
networks are of the same geometric origin as topologi-
cal edge floppy modes in periodic lattices. In discussions
above we constructed a real space transfer matrix method
that shows the exponential localization of floppy modes
on individual fibers. Next we show that a topological in-
variant, a generalization of the “topological polarization”
defined in Ref. [2] to disordered networks, can be defined
on the central fiber that dictates its edge floppy mode. In
order to do this we start by introducing the compatibility
matrix Cβm which maps site displacements (projected to
bond m) Uc,m onto bond extensions δlc,β

δlc,β =

nc∑
m=1

CβmUc,m, (6)

where the subscript c refers to “central fiber”, and sub-
scripts β,m labels the bonds and the sites respectively.
The form of Cβm is determined by the transfer matrix,
as detailed in the SI. We then rewrite this equation in
momentum space, where the compatibility matrix takes
the form C̃(q1, q2) where q1, q2 are momenta correspond-
ing to real space variables β,m respectively (note that

C̃ depends on two momenta as a result of disorder in-
stead of one in the periodic lattice case). Existence of
floppy modes is determined by the equation det C̃ = 0
which generally has no solution under periodic bound-
ary condition. Edge floppy modes under open boundary
condition is captured by introducing an extra complex
component to the momenta, k = k′+ ik′′ (note the same
k is added to both q1, q2 because they are in the same
dimension). The sign of k′′, which governs which end of
the fiber the floppy mode localizes to, is determined by
a topological invariant, the winding number

Nc =
1

nc

1

2π

∮ 2π

0

dk
d

dk
Im ln det C̃(q1 + k, q2 + k), (7)

such that Nc = 0, 1 correspond to floppy mode on the
right and left respectively. The actual solution k′′ is di-
rectly related to the decay rate λ on the fiber. Different
network geometries having the same Nc for a given cen-
tral fiber are related to one another by continuous defor-
mations without closing the bulk gap of that fiber. An
expanded discussion of Nc is in the SI.
Discussions – In this paper we show that in disordered
fiber networks, when individual fibers are pulled, a topo-
logical edge floppy mode localizes on the tail of the fiber.
Now we generalize this conclusion and discuss possible
application to experimental systems.

First, the scenario of pulling fibers in a network occurs
in various situations. For example, myosin motors exert
active pulling stress on actin filaments and are a main
source of activity in the cytoskeleton. Another exam-
ple is the active pulling by tumor cells on the extracel-
lular matrix when they invade into surrounding tissue.
It would be interesting to explore the biological conse-
quences of edge floppy modes that may arise as a re-
sult of such pulling. Our discussions above focus on 2D
fiber networks and thus directly apply to 2D networks
such as actomyosin cortex that encloses cells and nuclear
lamina that encloses cell nucleus. Analogous floppy edge
modes in 3D fiber networks will be the next step of study
and may have more interesting consequences. In addi-
tion, although our discussions specialize to the case of
one single fiber being pulled, in the SI, we include nu-
merical results for networks in which multiple fibers are
pulled simultaneously, where we show edge floppy modes
on each pulled fiber, as well as how macroscopic defor-
mations can also generate asymmetric edge stiffness due
to these edge modes. Moreover, in the modified Mikado
network we ignored the (higher order) stress generated in
the ground state. Including these residual stresses only
shifts the equilibrium force of the head and the tail of the
fibers, and the asymmetric stiffness remains true (see SI
for more discussion).

Second, although our discussion is based on the simple
geometric perturbation that one central fiber is pulled,
the transfer matrix method we develop applies to the
more general situation of geometric perturbation of the
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fiber network, because the exponential increase/decrease
of the floppy mode only depends on the relation between
the crossing fiber orientation and the direction of bending
of the central fiber. This type of change of geometry in
fiber networks can occur in a rich variety of systems. For
example, in a network where some or all of the crosslinks
are active motors which walk on particular directions on
the fibers [42–44], such coherent change in geometry can
also happen. As shown in Fig. 2d, where a central fiber
is crosslinked to other fibers via active motors, and the
chirality of the crossing fibers are correlated, a topologi-
cal edge floppy mode emerges on the central fiber due to
the active driving.
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