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We generalize the concept of Berry connection of the single-electron band structure to that of a
two-particle Cooper pairing state between two Fermi surfaces with opposite Chern numbers. Be-
cause of underlying Fermi surface topology, the pairing Berry phase acquires non-trivial monopole
structure. Consequently, pairing gap functions have topologically-protected nodal structure as vor-
tices in the momentum space with the total vorticity solely determined by the pair monopole charge
qp. The nodes of gap function behave as the Weyl-Majorana points of the Bogoliubov-de Gennes
pairing Hamiltonian. Their relation with the connection patterns of the surface modes from the Weyl
band structure and the Majorana surface modes inside the pairing gap is also discussed. Under the
approximation of spherical Fermi surfaces, the pairing symmetry are represented by monopole har-
monic functions. The lowest possible pairing channel carries angular momentum number j = |qp|,
and the corresponding gap functions are holomorphic or anti-holomorphic functions on Fermi sur-
faces. After projected on the Fermi surfaces with non-trivial topology, all the partial-wave channels
of pairing interactions acquire the monopole charge qp independent of concrete pairing mechanism.

PACS numbers: 74.20.Rp,73.43.-f,03.65.Vf

The study of topological states has renewed our under-
standing of condensed matter physics. The discovery of
two-dimensional integer quantum Hall states [1, 2] initi-
ated the exploration of novel states characterized by band
topology rather than symmetry [3–8], with magnetic
band structures that possess non-trivial Chern numbers
arising from broken time-reversal (TR) symmetry. The
study of Berry curvature of Bloch bands in such lattice
structures has led to rich results in anomalous Hall and
quantum anomalous Hall physics [9–16]. The band struc-
ture topology has also been generalized to systems of
topological insulators with TR symmetry [17–27]. The
stable gapless surface modes which appear at the bound-
ary of gapped topological systems have analogs in gap-
less semi-metallic systems, which can also have non-
trivial band topology. For example, topological Weyl
semi-metals have been proposed and realized in three-
dimensional (3D) systems in the absence of either TR
or inversion symmetry [28–57]. Their band structure is
characterized by degenerate Weyl points in the Brillouin
zone (BZ), which can be understood as monopole sources
and sinks of Berry-curvature flux in k-space.

Topological phenomena are usually understood in
terms of contributions from all the filled electronic states
rather than the states in the vicinity of Fermi surfaces.
The apparent disagreement with the central tenet of
Fermi-liquid theory that all conduction processes can be
understood at the Fermi level can be resolved by intro-
ducing the Berry phase of quasi-particles on the Fermi
surface [13]. So far, the study of the Fermi surface topol-
ogy and the associated Berry phase structure has mainly
been discussed at the single-particle level [11–14].

Here we study a novel class of exotic superconductiv-
ity which can be realized in doped Weyl metals, and
more generally in systems with topologically non-trivial

Fermi surfaces. In superconductivity with pairing be-
tween states on two disjoint Fermi surface sheets of op-
posite Chern numbers, the Cooper pair inherits a non-
trivial Berry phase from their underlying topological
single-particle Fermi surfaces. Consequently, the pairing
gap functions develop nontrivial net vorticities leading to
topologically-stable gapless nodes on the Fermi surfaces.
These nodes also determine the interplay between the
surface modes due to Weyl points in the band structure
and those arising from Cooper pairing. For Fermi sur-
faces with approximately spherical symmetries, the pair-
ing symmetry can be classified by monopole harmonic
functions rather than ordinary spherical harmonics. We
also performed partial-wave analysis on pairing interac-
tions. Non-trivial Fermi surface topology transforms or-
dinary partial-wave channels into monopole ones charac-
terized by the pairing monopole charge, which is deter-
mined by topology rather than concrete interactions.

We consider a general 3D electron system with a
pair of separated Fermi surfaces, denoted as FS±, re-
spectively, carrying opposite Chern numbers ±C. The
doped Weyl metal can be thought as a concrete ex-
ample. Let us start with a minimal description that
only assumes the existence of parity symmetry but bro-
ken TR symmetry. In this model, there are two Weyl
points located at ±K0, and are related to each other
by parity and respectively surrounded by FS±. Fur-
thermore, the parity ensures that opposite monopole
charges ±q are enclosed by FS±. Define the electron
creation operator c†a(k) in which a is the index of a gen-
eral two-band structure. For the single-electron states on
FS±, their creation operators are defined, respectively,
as α

†
±(±k) =

∑

a ξ±,a(±k)c†a(±K0 ± k), in which ±k

are the relative momenta for electrons on FS± with re-
spect to ±K0. ξ±,a(±k) are the corresponding normal-
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ized eigen-functions on FS±, respectively. And ±k lie on
two surfaces denoted as S± which correspond to shifting
FS± by ∓K0 towards the origin. Because of the non-
trivial monopole structure, ξ±,a(±k) cannot be globally
well-defined for ±k over the entire surfaces of S±, respec-
tively. They need to be described using a specific gauge.
The single-particle Berry connection can be defined as

A±(k) =
∑

a ξ
∗
±,a(k)i∇kξ±,a(k), in which ∇k lies in the

tangent space of S±, and, A± is a tangent vector field
therein. The Berry fluxes satisfy

v
S±

dk ·∇k ×A±(k) =

±4πq. The simplest case of C = 1 is associated with a
fundamental monopole charge of q = 1

2 .
Let us consider zero-momentum inter-Fermi surface

pairing between FS+ and FS−. The pairing operator
is denoted by P †(k) = α

†
+(k)α

†
−(−k). As pointed out by

Murakami and Nagaosa in Ref. [58], the Berry connec-
tion of the two-particle state created by P †(k) can be ex-
pressed as Ap(k) = A+(k)−A−(−k). The total pairing
Berry flux penetrating S+ is

v
S+

dk ·∇k ×Ap(k) = 4πqp
with qp = 2q. In other words, the inter-Fermi surface
Cooper pairing inherits the Berry fluxes of single elec-
trons on topological Fermi surfaces. Consequently, the
phases of Cooper pairing cannot be well-defined over the
entire Fermi surfaces, which leads to generic nodal struc-
ture of pairing gap functions.
Let us consider the gap function over S+ as ∆(k),

which is conjugate to the pairing operator P †(k) and
is a single-valued complex function. Assuming the nodal
structure of ∆(k) only composed of isolated points or
lines, it can be proved that ∆(k) possesses generic nodal
structure with total vorticity 2qp, which is a consequence
of the band topology on FS± and is independent of
specific pairing mechanisms and symmetries. The gap
function ∆(k) can be parameterized as |∆(k)|eiφ(k), in
which φ(k) is the pairing phase. ∆(k) is gauge-covariant
as follows: Under the gauge transformation ξ±(±k) →

ξ±(±k)eiΛ±(±k), we have α
†
±(±k) → α

†
±(±k)eiΛ±(±k),

and P †(k) → P †(k)eiΛ(k) in which Λ(k) = Λ+(k) +
Λ−(−k). Consequently, φ(k) and Ap(k) transform as
φ(k) → φ(k)−Λ(k) and Ap(k) → Ap(k)−∇kΛ(k). We
define a gauge invariant k-space circulation field on S+
as v(k) = ∇kφ(k) −Ap, which is regular except at gap
nodes. If we consider the case that ∆(k) only has isolated
zeros located at ki (i = 1, 2, ..., n). An infinitesimally
small loop Ci is defined around each gap node ki with
positive loop direction depending on the local normal di-
rection by the right-hand rule. Then,

∮

Ci
dk · v = 2πgi

in which gi is the vorticity and integer valued. Next, re-
versing the direction of each loop Ci and applying Stokes’
theorem on S+ (excluding the bad points ki’s on which
v is ill-defined), we arrive at

∑

i

gi =
∑

i

∮

Ci

dk

2π
· v =

{ dk

2π
· (∇k ×Ap) = 2qp.(1)

This proof is gauge-independent. If ∆(k) has line-nodes

FIG. 1. Two possible nodal structures of gap functions ∆(k)
on a Fermi surface S+ for qp = 1. Both nodes at the north and
south poles are vortices of the pairing phase with vorticity +1
for a) when ∆y = −i∆x and anti-vortices with vorticity −1
for b) when ∆y = i∆x. Each node in the equator plane in b),
exhibits vorticity +1. The total vorticity is 2qp for both.

on S+ which behave as branch-cuts of v, the proof can
also be done similarly.
Consequently, when qp 6= 0, ∆(k) cannot be a regular

function over the entire S+. Its nodal structure is distinct
from that of the usual pairing symmetry based on spher-
ical harmonics Ylm(k̂), which are regular functions over a
sphere. The absence of the monopole structure gives rise
to vanishing total vorticity of phases. For example, for
3He-A type pairing with orbital symmetry Y11(k̂), two
nodes at the north and south poles are a vortex and an
anti-vortex of the pairing phases, respectively.
To illustrate this, we use a modified Rice-Mele model

[59] describing 3D Weyl semi-metals in an array of bipar-
tite lattice A and B planes with spinless fermions [35, 43],

HK =
∑

a,b=A,B

∑

k

c†a(k)
{

[t− + t+ cos(2kx)]σx +

+t+ sin(2kx)σy + V σz − µ
}

ab
cb(k), (2)

in which the eigenbasis of σz refer to A B sublattices,
t+ = 1, t− = −(k2y + k2z), and V = 2ky. HK is invariant
under inversion with respect to the center of a bond along
x-direction, i.e., A ↔ B, k → −k, but breaks TR sym-
metry under which σy → −σy and k → −k. This model
has additional symmetries, including a mirror symmetry
Mxy, kz → −kz, and a combined TR with mirror Mxz,
ky → −ky (or Myz, A ↔ B, kx → −kx) symmetry. If
µ > 0, the Fermi surfaces FS± enclosing ±K0 have Chern
numbers C = ±1, respectively.
Consider the following pairing Hamiltonian

H∆ =
∑

a,b;k

c†a(k)2i[∆x sin(2kx) + ∆y sinkyσx]abc
†
b(−k)

+h.c. (3)

The corresponding tight-binding model is presented in
the Suppl. Mat. A [60]. Assuming that the system is in
a weak pairing region, i.e., |∆x,y| ≪ |µ|, we can project
the pairing onto FS±. Since the gap function satisfies
∆(−k) = −∆(k), let’s consider ∆(k) on FS+ only. ∆(k)
exhibits two nodes at the north and south poles of FS+.
We choose two different gauges, which are respectively
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FIG. 2. (Color Online) Bulk and surface spectra (for a single
open boundary in the yz-plane) vs. ky at different values of
kz = 1.03, 0.95, 0.93, 0.85 for a) to d). The parameters are
µ = 0.2 and ∆y = i∆x with ∆x = 0.2. Red (Blue) points
represent surface modes with positive (negative) charges.

non-singular in the two polar regions. Then, the gap
function can be approximated as ∆(k) = ∓∆xkx+∆yky
at the north and south poles, respectively. If ∆y = −i∆x,
the circulation field v(k) exhibits a pair of vortices lo-
cated at the north and south poles with vorticity +1
(Fig. 1 a)). There are no other nodes on FS+, and the
total vorticity is +2 in agreement with Eq. (1). In con-
trast, if ∆y = i∆x, the nodes at the north and south
poles change their vorticity to −1. However, the total
vorticity on FS+ remains +2 which implies additional
nodes. In our model, four additional nodes are found on
the equator with azimuthal angles ±π

4 and ± 3π
4 and with

vorticity +1 each (Fig. 1 b)).

Next, we study surface spectra under open boundary
conditions. In the absence of pairing, it is well-known
that surface Fermi arc states are formed by in-gap chiral
states for kz between two bulk Weyl points with |kz| <
K0,z [29, 31, 43]. When superconductivity opens pairing
gaps on FS±, additional surface Majorana modes can
be generated inside the gap. Specific locations of these
Majorana modes are determined by the pairing nodes on
FS± and the associated vorticity pattern. As have been
described in Ref. [54], in the presence of a combined
time-reversal and mirror reflection with respect to the
plane bisecting a bond along x here, surface Majorana
states must connect to surface Fermi arcs arising from
the Weyl band structure as kz varies.

We impose two open boundaries parallel to the yz-
plane, and plot the spectra vs. ky at different values of
kz, with modes localized on the bottom boundary sup-
pressed. The results of the case ∆y = i∆x are shown
in Fig. 2 a)-d), and those of ∆y = −i∆x are presented
in Suppl. Mat. B [60]. Because of the mirror symme-
try, the spectrum is invariant under kz 7→ −kz together

with a particle-hole transformation. At µ = 0.2, FS+
enclosing K0 = (0, 0, 1) intersects the kz-axis at kn ≈ 1.1
(the north pole) and ks ≈ 0.9 (the south pole). For cuts
at kz > kn , or, kz < ks , since they do not intersect
FS+, the corresponding surface spectra are determined
by the Weyl band structure: No surface modes exist at
kz > kn; but two branches of chiral surface modes ap-
pear at −ks < kz < ks (Fig. 2 d)) which are related
by the particle-hole transformation, which reverses their
charges and maps (ky , kz) 7→ (−ky,−kz), followed by
a z-reflection, (−ky,−kz) 7→ (−ky, kz). Consequently,
for fixed −ks < kz < ks one surface mode is electron-
like (the standard Fermi arc) with a quasiparticle charge
0 < e∗(ky, kz) < e, and the other is the z-reflection of its
particle-hole conjugate, with e∗(−ky, kz) < 0. Because
kz lies outside FS±, the particle-hole mixing is weak, so
the charge of the electron-like arc mode is close to e.

As kz crosses the Fermi surface FS+ , each kz defines a
Fermi-surface cross section (FS-CS) on FS+ of the Weyl
metal, which becomes gapped by pairing. The surface
band topology changes when kz passes gap closing points,
which are the zero energy Weyl-Majorana (WM) points
for the bulk BdG Hamiltonian. These WM points are
classified as positive or negative according to their chiral
indices. As shown in Fig. 1 b), the WM points at the
north and the south poles are negative; while those near
the equator are positive. As kz decreases through the
WM point at the north pole, the surface gap closes and
reopens. Within the FS-CS, a single surface mode with
negative chirality passing through zero energy as shown
in Fig. 2 a). The gap closes again at kz ≈ K0, where
projections of the four positive WM points are found. As
the cut of kz further moves downward, the gap reopens
and there are three surface modes with positive chirality
(Fig. 2 b) and c)). The central zero-energy mode inside
the FS-CS is mostly of the Majorana nature arising from
pairing but its chirality is opposite to that in Fig. 2 a).
The other two mostly arise from the Weyl band structure.
After kz passes the WM point at the south pole which
contributes vorticity −1, the number of surface modes
is decreased to two (Fig. 2 d)), as BdG doubled usual
Fermi arcs in Weyl semi-metals.

When kn > kz > ks, the charge of surface quasi-
particles changes continuously as a function of ky from
hole-like to particle-like through a “neutral point”, which
in our model is pinned at ky = 0 by the z-reflection
symmetry e∗(ky, kz) ≡ −e∗(−ky,−kz) = e∗(−ky, kz). In
general, these points form a “neutrality line” in the sur-
face BZ connecting the projections of the two WM points.
The z-reflection symmetry also gives the quasi-particle
spectrum the symmetry E(ky , kz) ≡ −E(−ky,−kz) =
E(−ky, kz), so the zero-energy line, like the neutral point
is pinned to ky = 0, and its group velocity is in the y-
direction. Near the north pole, the zero-energy point has
group-velocity in the −ŷ direction, while near the south
pole, it is along +ŷ. A consequence of the reflection sym-
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metry is that at some intermediate kz , its group velocity
vanishes.
Next we study the pairing partial-wave symmetries

when FS± have approximate spherical symmetry. If we
neglect the small anisotropy, the complete bases of ∆(k)
for k lying on S+ with a total vorticity 2qp are spanned by

monopole harmonic functions Yqp,jm(k̂) instead of spher-
ical harmonics Ylm. Monopole harmonic functions have
been widely applied in physics [4, 61, 62]. For complete-
ness, their basic properties are summarized in Suppl.
Mat. C [60]. After projecting to FS±, the pairing Hamil-
tonian becomes H∆ =

∑

k
∆(k)P †(k) + ∆∗(k)P (k) for

k lying close to S+. We define ∆(k) = ∆(|k|)f(k̂), in

which the angular dependence on k̂ and the energy de-
pendence on |k| are separated. ∆(|k|) is assumed positive

and the angular factor f(k̂) is complex satisfying the nor-

malization condition
∫

dk̂|f(k̂)|2 = 1. f(k̂) is expanded
in terms of the monopole harmonic functions as

f(k̂) =
∑

jm

cjmYqp;jm(k̂), (4)

in which cjm are complex coefficients. Both the pair-
ing operator P †(k) and the gap function ∆(k) are gauge
dependent, while, H∆ is gauge independent.
A remarkable feature is that all the pairing channels

should follow j ≥ |qp| regardless of the pairing mecha-
nism since Yqp,j,m starts from j = |qp|. The absence of
pairing channels with j < |qp| is robust as a consequence
of topology and the monopole harmonic representation of
a rotation group. Furthermore, the lowest order pairing
channel j = |qp| is special: Yqp,j=|qp|,m(k̂) are holomor-
phic or anti-holomorphic functions. All of its 2qp-nodes
exhibit the same vorticity, and thus ∆(k) is completely
determined by the locations of its nodes up to an overall
factor. The nodes of Yqp,j=|qp|,m(k̂) represent vortices of
the pairing phases on S+. The location of pairing nodes
are also WM points of the BdG Hamiltonian with the
same chirality. For each node on FS+ at K0 + k, there
exists its image on FS− exhibiting the opposite vorticity.
In the Suppl. Mat. D [60], we use concrete examples to
further illustrate the distribution of pairing nodes on the
approximately spherical Fermi surface.

We next perform partial-wave analysis of the pair-
ing interactions. It is the non-trivial topology of FS±
that transforms the ordinary partial-wave channels into
those characterized by monopole harmonics starting with
j = |qp|, which is in fact independent of concrete pairing
mechanism. For simplicity, we consider a concrete exam-
ple: The low energy band Hamiltonians around the Weyl
points ±K0 as Hw,±(±K0 + k) = ±vσ ·k−µ, where σ’s
represent Pauli matrices for spins, and, without loss of
generality, µ > 0 is assumed. Due to the opposite chi-
ralities of FS±, the inter-Fermi surface Cooper pairing is
between two electrons with parallel spins. Hence, only
the spin triplet pairing channel is considered, expressed

as Hpair =
∑

k,k′;m Vt(k,k
′)χ†

1m(k)χ1m(k′)+h.c., where

χ
†
1m(k) =

∑

σσ′ 〈1m| 12σ;
1
2σ

′〉c†σ(K0 + k)c†σ′ (−K0 − k).
are the spin triplet pairing operators. Since usual inter-
actions in solids do not directly flip spins, the spin index
m is expressed in the Sz-eigenbasis. So far, Hpair has not
been expressed in the helical basis, and hence it is still not
the low energy pairing Hamiltonian. To project Hpair to
helical Fermi surfaces, the pairing operator on FS± is ex-

pressed as P (k) =
√

4π
3

∑1
m=−1 Y−1;1m(k̂)χ1m(k), and

the consequential projected pairing Hamiltonian is

H̃pair =
∑

k,k′∈S+

Ṽ (k,k′)P †(k)P (k′) + h.c., (5)

in which k and k
′ are on S+ , and,

Ṽ (k,k′) =
4π

3
Y ∗
−1;1m(k̂)Vt(k,k

′)Y−1;1,m(k̂′), (6)

is the projected pair scattering matrix element. Be-
cause of Fermi statistics, the pair scattering matrix ele-
ment before projection is expressed as Vt(k,k

′) = V (k−
k
′)− V (k+ k

′ + 2K0), where the first and second terms
are the intra- and inter-Fermi surface scattering, respec-
tively. The inter-Fermi surface scattering involves large
momentum transfer and will be neglected below. As for
the intra-Fermi surface scattering V (k − k

′), for sim-
plicity, we assume it is factorizable and rotationally in-
variant around K0 for k and k

′ on S+, such that it
only depends on the relative angle between k and k

′ as
V (k−k

′) = V (k̂ · k̂′). Unlike the usual case, i.e., K0 = 0,
that Vt only contains the odd partial-wave channels, here,
both even and odd partial-wave channels are allowed as
Vt(k,k

′) = V (k̂ · k̂′) =
∑

lm
4πgl
2l+1Y

∗
lm(k̂)Ylm(k̂) in which

l is integer-valued.
After the projection, as defined in Eq. (6), pairing

interaction becomes

Ṽ (k̂ · k̂′) =
∑

j≥1,m

g̃jY
∗
−1,jm(k̂′)Y1,jm(k̂), (7)

with g̃j = 1
2j+1

∑

l=j,j±1(2l + 1)gl|〈l0; 11|j1〉|
2. The

monopole harmonic partial wave channels start from
j = 1. In other words, the projection to helical Fermi
surfaces reorganizes all partial-wave channels and shifts
the lowest partial wave channel from j = 0 to 1. The
actual pairing channel that the system prefers is deter-
mined by where the most negative eigenvalue lies in the
pairing matrix.
In summary, we have studied the Cooper pairing sym-

metry between two separate Fermi surfaces carrying op-
posite Chern numbers ±C. The Cooper pairs carry a
non-trivial Berry phase structure characterized by the
monopole charge qp = C so that their phases cannot
be globally well-defined on the Fermi surfaces. The gap
function ∆(k) generically possesses nodes with the total
vorticity 2qp. These nodes are also the WM points of the
Hamiltonian in the BdG formalism. The surface modes
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arise both from the Weyl band structure and the pairing:
the former exist inside the band gap, while the latter ap-
pear inside the pairing gap on FS±. In a simplified model
where FS± are both spherical, the pairing symmetry is
classified in terms of the monopole harmonic functions.
The lowest pairing channel is j = |qp| which is purely
determined by topology rather than interactions. The
corresponding pairing functions are holomorphic or anti-
holomorphic functions on the pairing surface. Partial-
wave analysis shows that the ordinary pairing interac-
tions, when projected on these topologically non-trivial
Fermi surfaces, acquired the pairing monopole charge in
all the partial wave channels regardless of concrete pair-
ing mechanism.
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