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Abstract

Large size effects are experimentally measured in lattices of triangular unit cells: about a
factor of 36 in torsion rigidity and 29 in bending rigidity. This nonclassical phenomenon is
consistent with Cosserat elasticity which allows for rotation of points and distributed moments
in addition to the translation of points and force stress of classical elasticity. The Cosserat
characteristic length for torsion is ℓt = 9.4 mm; for bending it is ℓb = 8.8 mm; these values are
comparable to the cell size. Nonclassical effects are much stronger than in stretch dominated
lattices with uniform straight ribs. The lattice structure provides a path to attainment of
arbitrarily large effects.

Continuum theories of elasticity are widely used for representing materials with microstructure,
including composites and lattice “metamaterials”, as continuous media. The currently accepted
classical theory permits the Poisson’s ratio in isotropic materials to range from -1 to 1/2 and
incorporates two independent elastic constants. Theory with less freedom was tried: the uniconstant
theory of elasticity, developed by Navier [1] incorporates only one elastic constant, a modulus, and
was based on an assumption that forces acted along the lines joining pairs of atoms and were
proportional to changes in distance between them. Navier’s theory predicted a Poisson’s ratio
of 1/4 for all isotropic materials and was abandoned when experiments demonstrated a range of
Poisson’s ratios so the current classical theory was adopted. The Cosserat theory [2] (with inertia
terms called micropolar [3]), has more freedom than classical elasticity; it incorporates a local
rotation of points and a couple stress (torque per unit area) as well as the translation of points and
force stress of classical elasticity. The Cosserat theory of elasticity has six independent isotropic
elastic constants and even more constants if the material is anisotropic. In contrast to classical
elasticity, Cosserat elasticity incorporates a characteristic length scale in the continuum; the solid
becomes sensitive to strain gradients, hence has a nonlocal aspect, and can support an asymmetric
stress.

Classical elasticity is entirely adequate for macroscopic specimens in which the structure size
is many orders of magnitude smaller than the experimental size scale; macroscopic scale tests for
Cosserat effects in aluminum revealed classical behavior [4]. Nonclassical elastic effects are expected
if the ratio of structural to experimental length scale is non-negligible. At the atomic scale, non-
central forces are associated with moments such as those between dipoles; these moments can be
subsumed in a Cosserat analysis. Dispersion of waves of length a small multiple of the lattice
spacing was used to infer Cosserat behavior in diamond crystals [5]; the inferred characteristic
length was about 0.2 nm. More recently, classical elasticity [6] was predicted to break down in
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crystalline materials in the length scale range of 1-10 nm. In chiral cholesteric elastomers [7] the
characteristic length was predicted to be on the order of 10 nm. These length scales are on the
order of the structure size. Cosserat type freedom is not limited to elasticity; it can occur in
other physical properties. Piezoelectric materials are known to exhibit nonclassical sensitivity to
gradients [8], interpreted via a nonlocal concept [9]. The characteristic length, governed by the
spacing of ions in the lattice, is enhanced in ferroelectrics so that effects were observed in layers
several µm thick. Such materials in recent studies have been called flexoelectric [10].

A larger characteristic length is to be expected in materials with larger structural length scales.
This is not a sufficient condition; the specific nature of the structure is pertinent as well. The
Cosserat couple stress arises from the superposition of bending and twisting moments transmitted
by the structural elements in materials. The Cosserat local rotation corresponds to the rotation
of the structural elements. Forces and moments are also considered in the classical analyses of
foam [11] in which classical elastic moduli were determined; effects of rotation gradients were not
considered. Lattices with straight elastic ribs were analyzed via theoretical homogenization [12]
[13] [14] as Cosserat solids. Such lattices, despite their structure, are nearly classical; the Cosserat
characteristic lengths are much smaller than their cell sizes. The reason is that these structures
are stretch dominated: the effects of rib extension greatly exceed the effects of rib bending and
torsion. Rib extension in such structures governs the force stress hence the classical elastic moduli;
rib bending and torsion transmits moments corresponding to the Cosserat couple stress. The
distributed Cosserat moments are minimal in comparison with the forces, so the characteristic
length is small compared with the cell size in such lattices.

A composite containing round aluminum beads in an epoxy matrix was tested experimentally
for Cosserat effects and was found to be classical [15]. Indeed, composites containing stiff spheres
were shown by homogenization analysis to have characteristic lengths of zero [16]. A dense closed
cell polymer foam exhibited Cosserat effects; the characteristic length was comparable to the cell
size (the largest cells had diameter 0.15 mm) but size effects (see below) were only about a factor of
1.3 as a result of weak coupling [17]. Rotational waves of the sort anticipated in Cosserat elasticity
were observed in a non-cohesive granular assembly of metal spheres [18]. A value of κ (defined
below) was inferred but characteristic lengths were not obtained; indeed the granular assembly was
predicted to have rotation gradient sensitivity terms α, β, γ equal to zero hence zero characteristic
length; as with composites with hard spheres, this is a degenerate case.

Lattices of the type presented in this Letter exhibit strong nonclassical effects consistent with
Cosserat elasticity; the design provides a path to achieving arbitrarily large Cosserat effects.

In Cosserat elasticity the stress, σjk, can be asymmetric. The resulting moment is balanced by

a couple stress, mjk. The antisymmetric part of the stress is related to local rotations: σantisym
jk =

κejkm(rm − φm) in which κ is an elastic constant, φm is the rotation of points, called micro-
rotation, ejkm is the permutation symbol, and rk = 1

2eklmum,l is the macro-rotation based on the
antisymmetric part of gradient displacement ui. The constitutive equations for linear isotropic
Cosserat elasticity [3] are as follows.

σij = 2Gǫij + λǫkkδij + κeijk(rk − φk) (1)

mij = αφk,kδij + βφi,j + γφj,i (2)

There are six independent elastic constants for an isotropic Cosserat solid. Constants λ, G have
the same meaning as in classical elasticity; α, β, γ provide sensitivity to rotation gradients and κ
quantifies the coupling between fields. Technical constants, derived from these elastic constants are
beneficial for physical insight and are as follows.
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Young’s modulus E = G(3λ+2G)
λ+G

, shear modulus G, Poisson’s ratio ν = λ
2(λ+G) , characteristic

length, torsion ℓt =
√

β+γ
2G , characteristic length, bending ℓb =

√

γ
4G , coupling numberN =

√

κ
2G+κ

,

polar ratio Ψ = β+γ
α+β+γ

. This is a generalization of the extraction of technical constants from
tensorial ones in classical elasticity.

There are several key consequences of Cosserat elasticity which differ from classical predictions.
Circular holes exhibit a lower stress concentration factor than expected classically and small holes
exhibit less stress concentration than larger ones [19]. A characteristic of Cosserat elasticity per-
tinent to the research presented in this letter is the prediction of a size effect in the torsion [17]
and bending [21] of circular cylinders of Cosserat elastic materials. These size effects manifest as
slender cylinders appearing stiffer than predicted classically.

(a) 3D printed rib structure.
(b) CAD rib structure.

Figure 1: 3D printed rib structure vs. idealized drawing. Scale bar, 5 mm.

The lattices considered in this letter were developed to achieve strong Cosserat effects by de-
coupling the rib rigidity in torsion and bending from its rigidity in extension. This maximizes
sensitivity to rotation gradient. These lattices were embodied via selective laser sintering (SLS),
an additive manufacturing technique. The lattice was modeled in SolidWorks and was converted
to STL format for export to 3D printing. Specimens were printed by a 3D Systems sPro 60 HD-HS
printer. The parent material was a polyamide polymer equivalent to Nylon 12. Each rib element
(Figure 1) consists of square section tubular segments with a portion that approximates a Sarrus
linkage. The ideal Sarrus linkage contains hinged elements and offers zero resistance to axial com-
pression but resists torsion. The measured effective Young’s modulus in bending of one rib element
was 281 MPa; in compression it was 14 MPa; for a solid rod these moduli would be equal. The
torsional modulus was 387 MPa. The ribs, though not hinged, therefore resist torsion and bending
to a much greater extent than compression. This rib design was created to be sensitive to gradients
and thus demonstrate large size effects when used to construct 3-D structures. Each rib connects
with its neighbors via hexagonal nodes shown in Figure 2. The lattice comprised of these ribs
consists of triangular prism unit cells of which the side length of the triangular bases was 10.5 mm
and the height was 9.0 mm. The lattice density was 0.16 g

cm3 .
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(a) Lattice structure in cross section.

(b) Lattice structure.

Figure 2: Cross section and side view of 3D printed lattice structure. Scale bar, 10 mm.

Cosserat effects were probed by measuring size dependence of rigidity at constant frequency.
This protocol provides sensitivity to spatial gradients; it is insensitive to time derivatives because all
experiments were done at the same frequency. By contrast, in wave methods, a change in wavelength
is accompanied by a change in frequency. Therefore wave dispersion due to viscoelastic damping
cannot be distinguished from dispersion due to sensitivity to spatial gradients. Five structures of
increasing size, but the same aspect ratio, were printed. Specimens had complete cells with no
partial cells; this was done by making cross section shapes aligned with the symmetry axes. All
sections were hexagonal except the smallest which was triangular. Equivalent circles were inscribed
for interpretation. The specimens, from smallest to largest, were composed of the following number
of unit cells in cross-section by height: 1x3, 6x7, 24x13, 54x19, 96x26.

These specimens were tested for torsional and bending rigidities using a Broadband Viscoelastic
Spectrometer (BVS) [20]. This apparatus uses a pair of Helmholtz coils to apply a torque of
controllable direction to the specimen via a magnet attached to the base via a ceramic stalk and
cement. The magnet was calibrated in the BVS using a lock-in amplifier. A mirror was glued to the
specimen’s base edge. To measure displacement, the beam of a semiconductor laser was reflected
off this mirror and directed to a silicon light detector. The light detector was calibrated by moving
it a known distance, via calibration stage, and measuring output voltage. A calibration curve was
generated and the change in output voltage per change in position was used as the beam position
calibration constant (V/µm).

A sinusoidal signal with a frequency of 1 Hz, was input to the torsion Helmholtz coil. The same
frequency was used for all specimen sizes to decouple viscoelastic effects from the size effects being
probed. The resulting torque vs. angular displacement signals were displayed as a Lissajous figure
on an oscilloscope; the modulus and viscoelastic damping of the structures were then calculated.
To measure bending moduli, the orthogonal bending Helmholtz coil was used and the light detector
was switched to measure vertical displacement. The calibration constant for the light detector was
determined as before and the magnet’s calibration constant for bending was used in calculations.

Compression tests were conducted using a screw-driven test frame to ascertain the Young’s
modulus of the specimens in the absence of macroscopic gradients of strain or rotation as well as
to measure the Poisson’s ratio. Anisotropy of modulus was probed via propagation in different
directions of acoustic waves of wavelength much larger than the cell size.

Size effects in torsion were interpreted using the following exact solution for a Cosserat elastic
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circular rod of radius r with Ω as the ratio of structural rigidity to its classical counterpart [15]:

Ω = (1 + 6
{ℓt
r

}2
)

[

1− 4
3Ψχ

1−Ψχ

]

(3)

in which χ = I1(pr)/prI0(pr), p
2 = 2κ/(α + β + γ) and I0 and I1 are modified Bessel functions

of the first kind. Classical torsional rigidity is M
θ

= G[π2 r
4]. G is the true shear modulus in the

absence of gradients, M is the applied moment and θ is the angular displacement per length.
The shear modulus G, characteristic length of torsion ℓt, and the coupling number N were found

by fitting Equation 3 to the full set of experimental data using MATLAB. Ψ was determined from
the behavior of the data near the origin.

For bending, the classical rigidity is M
θ
= E[π4 r

4]. The exact expression of the rigidity ratio for
bending of a Cosserat elastic circular rod of radius r is:

Ω = 1 + 8(
ℓb
r
)2
(1− (β

γ
)2)

(1 + ν)
+

8N2

(1 + ν)

[

(β
γ
+ ν)2

ζ(δr) + 8N2(1− ν)

]

(4)

in which δ = N/ℓb and ζ(δr) = (δr)2[((δr)I0((δr))− I1((δr)))/((δr)I0(δr)− 2I1(δr))]. The Young’s
modulus E and Poisson’s ratio ν were determined from compression testing while ℓb, β/γ, and N
were determined from fitting the full set of experimental data with Equation 4.

Results for torsion size effects studies are shown in Figure 3. Viscoelastic dispersion of the
modulus cannot obtrude in the interpretation because all experiments were conducted at 1 Hz.
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Figure 3: Size effects for lattice specimens in torsion. Points are experimental. The black curve
is theoretical for best fit G = 1.1 MPa, ℓt = 9.4 mm, N = 1, Ψ = 1.0. Blue curves illustrate
theoretical predictions for ℓt = 5.0 and 14 mm, respectively. Classical elasticity (ℓt = 0) predicts
constant Ω = 1 independent of diameter which is indicated by the green horizontal dashed line.

For torsion, G = 1.1 MPa, ℓt = 9.4 mm, and N = 0.999. Error bars shown were calculated
from noise in the signal and from uncertainties in specimen dimensions. The mean absolute percent
deviation between experimental results and the Cosserat prediction was 12% while the root-mean-
square deviation (RMSD) was 0.50. The increase in relative stiffness did not roll off near the origin
therefore Ψ < 1.5. Results are consistent with Ψ = 1 but are not very sensitive to Ψ in this regime.
The maximum size effect in torsion was Ω = 36 corresponding to a 3500% deviation from the
classical prediction. The asymptotic value of G was located via curve fit. The characteristic length
is comparable to the structure cell size.

The results of bending size effect studies are shown in Figure 4 in which E = 3.14 MPa, ν = 0.05,
ℓb = 9.1 mm, β/γ = 0.5, N = 0.99. The mean absolute percent deviation between experimental
results and Cosserat prediction was 14% while and the RMSD was 0.58. The asymptotic value for E
is based on the average compression modulus corrected for the difference in frequency (0.04 Hz vs.
1 Hz) via dispersion inferred from observed damping tan δ ≈ 0.05. In compression there is no strain
gradient. Similarly, the Poisson’s ratio is the average based on compression. The maximum size
effect in bending was Ω = 29.4 corresponding to a 2843% deviation from the classical prediction.

It is concluded that the response follows Cosserat elasticity not classical elasticity and that the
Cosserat characteristic length is comparable to the cell size. Size effects are large in magnitude.
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Figure 4: Size effects for lattice specimens in bending. Points are experimental. The black curve is
theoretical for best fit E = 3.14 MPa, ν = 0.05, ℓb = 8.8 mm, β/γ = 0.5, N = 0.99. Blue and cyan
curves illustrate theoretical predictions for ℓb = 4.8 and 13 mm, respectively. Classical elasticity
predicts constant Ω = 1 independent of diameter which is indicated by the green horizontal dashed
line.

Pulsed acoustic wave measurements at 60◦ intervals in the transverse plane and in the longitu-
dinal direction revealed the lattice material to exhibit elastic transverse isotropy. The longitudinal
modulus was lower than the transverse by a factor 1.3; the lattice does not deviate much from
isotropy. No analytical solutions for Cosserat elasticity are available for anisotropic rods. There-
fore, the isotropic solutions discussed above were used for interpretation and the elastic constants
were interpreted as technical constants. This is analogous to materials testing in classical elasticity
in which it is not always practical to incorporate a full anisotropic interpretation. Anisotropy is not
a confounding variable because size effects do not occur in classical elasticity even in the anisotropic
case [22]. If need be, one may titrate the geometry of the structure to achieve elastic isotropy as
has been done for negative Poisson’s ratio metal foams.

A wave cut off frequency effect above 3 kHz was observed but its interpretation is equivocal.
Cut off of waves can arise from structural resonance, from viscoelastic damping, or from both.
In the present lattice, the wavelength at 3 kHz is about five times the cell size. Because the
cells have complex structure, such a wavelength may suffice for resonance. Attenuation based on
calculation from viscoelastic damping also suffices to significantly damp the waves above 3 kHz.
Also, viscoelasticity contributes to wave dispersion which in non-dissipative solids could be used
to infer Cosserat effects. So, for the present polymer lattice materials, the constant frequency
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size effect approach used here provides unambiguous interpretation, in contrast to wave methods.
Periodic crystal lattices of atoms [23] with minimal attenuation, by contrast, are amenable to wave
methods.

As for further comparisons, in 2-D chiral honeycomb lattices analyzed as Cosserat continua, the
Cosserat characteristic lengths are similar to the cell size [24] and the Cosserat coupling number
N approaches its upper limit of 1. Experiments on low density open cell polymer foams disclose
substantial size effects Ω up to a factor 6.5 [25] and up to a factor 12 [26] in negative Poisson’s ratio
foam [27]. The characteristic length exceeded the cell size in both foams, but foams were much
more compliant (E = 91 kPa for normal foam and 25 kPa for negative Poisson’s ratio foam) than
the present lattices (2.9 MPa).

In contrast to foams, the present lattice structure provides a path to attainment of arbitrarily
large effects: the Sarrus type rib segments can be made more slender, in view of future improvements
in 3D printing. Bend dominated behavior appears to be a necessary but not sufficient condition
for strong Cosserat effects in cellular solids such as lattices and foams. Bend dominated behavior
refers to rib deformation that occurs primarily in bending rather than compression / axial stretch.
By contrast stretch dominated lattice structures with straight uniform ribs are predicted to exhibit
very weak Cosserat effects [12] [13] [14]. Other lattice “metamaterials” for high strength [28] made
by 3D printing [29] have been treated as classically elastic in the absence of gradients but can
be expected to exhibit Cosserat freedom; similarly lattice “metamaterials” with controllable Hall
coefficient [30].

In summary, large size effects are observed in the bending and torsion of designed lattices of
triangular prismatic unit cells. The size effects are inconsistent with classical elasticity but are
consistent with Cosserat elasticity. Other theories of elasticity with more degrees of freedom, such
as those incorporated in micromorphic/Mindlin microstructure theory [31] or microstretch elasticity
[32], are not excluded; they are not necessary for the present observations.

We gratefully acknowledge support of this research by the National Science Foundation via
Grant CMMI-1361832.
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