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We demonstrate generation of chiral modes–vortex flows with fixed handedness–in exciton-
polariton quantum fluids. The chiral modes arise in the vicinity of exceptional points (non-Hermitian
spectral degeneracies) in an optically-induced resonator for exciton polaritons. In particular, a vor-
tex is generated by driving two dipole modes of the non-Hermitian ring resonator into degeneracy.
Transition through the exceptional point in the space of the system’s parameters is enabled by
precise manipulation of real and imaginary parts of the closed-wall potential forming the resonator.
As the system is driven to the vicinity of the exceptional point, we observe the formation of a
vortex state with a fixed orbital angular momentum (topological charge). This method can be ex-
tended to generate higher-order orbital angular momentum states through coalescence of multiple
non-Hermitian spectral degeneracies. Our work demonstrates the possibility of exploiting nontrivial
and counterintuitive properties of waves near exceptional points in macroscopic quantum systems.

Introduction.—Exceptional points (EPs) in wave res-
onators of different origin arise when both spectral po-
sitions and linewidths of two resonances coincide and
the corresponding spatial modes coalesce into one [1, 2].
Originally identified as an inherent property of non-
Hermitian quantum systems [3–5], EPs have become a fo-
cus of intense research in classical systems with gain and
loss [6], such as optical cavities [7], microwave resonators
[8, 9], and plasmonic nanostructures [10]. The counterin-
tuitive behaviour of waves in the vicinity of an EP leads
to a range of peculiar phenomena, including enhanced
loss-assisted lasing [11, 12], unidirectional transmission
of signals [13], and loss-induced transparency [14].

Due to the nontrivial topology of the EP, the two eigen-
states coalesce with a phase difference of ±π/2, which
results in a well-defined handedness (chirality) of the sur-
viving eigenstate [15]. This remarkable property was first
experimentally demonstrated in a microwave cavity [9]
and, very recently, enabled observation of directional las-
ing in optical micro-resonators [16, 17]. So far, the chi-
rality of the unique eigenstate at an EP has not been
demonstrated in any quantum system.

In this work, we demonstrate formation of a chiral state
at an EP in a macroscopic quantum system of condensed
exciton polaritons. Exciton polaritons are hybrid bosons
arising due to strong coupling between excitons and pho-
tons in semiconductor microcavities [18, 19]. Once suffi-
cient density of exciton polaritons is injected by an op-
tical or electrical pump, the transition to quantum de-
generacy occurs, whereby typical signatures of a Bose-
Einstein condensate emerge [18–23]. Radiative decay of

polaritons results in the need for a continuous pump to
maintain the population. This intrinsic open-dissipative
nature of exciton-polariton condensates offers a new plat-
form for study of non-Hermitian quantum physics. Sev-
eral recent experiments have exploited the non-Hermitian
nature of exciton-polariton systems [24–27]. Importantly,
the existence of EPs and the associated topological Berry
phase has been demonstrated in an optically-induced res-
onator (quantum billiard) for coherent exciton-polariton
waves [27].

An optically-induced exciton-polariton resonator is a
closed-wall potential arising due to injection of high-
energy excitonic quasiparticles by an off-resonant opti-
cal pump and strong repulsive interaction between the
excitonic reservoir and the condensate [28]. The size of
the resonator is comparable to the de Broglie wavelength
of the exciton polaritons, and its geometry is defined by
the spatial distribution of the optical pump [29–31]. Ob-
servation of the EPs in the spectra of exciton-polariton
resonators is enabled by two characteristic features of
this system. First, the optically confined exciton polari-
tons form a multi-mode condensate, i.e. they can macro-
scopically occupy several single-particle energy states of
the pump-induced effective potential [32]. Secondly, the
potential is non-Hermitian, and both real (energy) and
imaginary (linewidth) parts of its complex eigenenergies
can be precisely controlled by adjusting parameters of
the pump [27]. As a result, two or more eigenstates of
the system can be brought to degeneracy.

Here, we create a non-Hermitian trapping potential for
exciton polaritons in the form of an asymmetric ring res-
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FIG. 1: (a) Experimental pump intensity distribution. The
width of the left half-ring is W = 9 µm and is fixed; the
width of the right half-ring is tuned between w1 = 1.0 µm and
w2 = 1.2 µm with a step of 0.1 µm. The inner ring diameter is
D = 15 µm and is fixed. (b) Schematics of the DMD mirror
mask shaping the pump spot (white), the direction of the
gradient of the cavity wedge (yellow), and the corresponding
dipole modes of the trapped exciton polaritons (blue and red).

onator, and observe condensation into several trapped
modes. By changing the geometry of the pump, and
therefore the overlap of the modes with the gain region,
we observe the transition from crossing to anti-crossing
of complex eigenvalues, which signals the existence of an
EP. Furthermore, our tapered microcavity ’wedge’ [33]
enables precise control over the ratio of the exciton and
photon in the hybrid quasiparticle. We use this addi-
tional control parameter to drive the two lowest-lying
dipole states of the system to a vicinity of an EP and
confirm the formation of a chiral mode – a charge one
vortex.

Experiment.—We create exciton polaritons in a
GaAs/AlGaAs microcavity similar to that used in
Ref. [33]. The details of the experimental setup can be
found in Supplemental Material (SM) [34]. By utilising
a digital micromirror device (DMD), we create the pump
spot of the asymmetric ring shape shown schematically
in Fig. 1. The pump simultaneously populates the sys-
tem with exciton polaritons and forms a potential barrier
due to the local blue shift in energy induced by the ex-
citonic reservoir [28]. Similarly to Ref. [27], the inner
area of the ring, D, is kept constant and the width of
one of the potential wall segments, w, is varied. Anal-
ysis of the microcavity photoluminescence by means of
energy-resolved near-field (real-space) imaging allows us
to obtain the spatial density distribution and energy lev-
els corresponding to the condensate modes in the ring
resonator. All experiments are performed in the strong
coupling regime, with the pump power approximately 1.5
times above the polariton condensation threshold.

Due to the asymmetry of the potential walls imposed
by the pumping geometry and by the cavity wedge [33],
the eigenmodes of the optically-induced ring resonator
resemble the Ince-Guassian modes [35]. Once the thresh-
old for the condensation is reached, only a few modes are
occupied, and we focus on the two dipole modes (1, 1)
with the orthogonal orientation of the nodal lines. Due
to their orientation, the two dipole modes have different
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FIG. 2: The (a) crossing of the real parts of the eigenergies
and (b) anti-crossing of the imaginary parts of the eigenen-
ergies (linewidths) corresponding to the dipole states for the
changing detuning, ∆, and fixed width of the right half-ring
w2 = 1.2 µm. The variation of ∆ is produced by moving the
excitation beam relative to the sample over the distance of ap-
proximately 60 µm. Insets in (a) show the corresponding spa-
tial density structure of eigenmodes observed in the energy-
resolved tomography measurement (see SM [34]). The (c)
anticrossing of the energies and (d) crossing of the linewidths
for the changing detuning, ∆, and fixed width of the right
half-ring w1 = 1.0 µm.

overlap with the gain region and are, in general, not en-
ergy degenerate and well separated from the other modes
(see SM [34]).

Because of the non-Hermitian nature of exciton polari-
tons, the eigenenergy of the modes in the ring potential is
also complex, where the real part corresponds to the en-
ergy peak position, and the imaginary part corresponds
to the linewidth. In our experiment, the peak positions
corresponding to the two dipole modes can be tuned by
changing the relative admixture of exciton and photon
in the exciton polariton. This is achieved by keeping all
parameters of the pump fixed and changing the relative
position between the excitation beam and the sample, as
a linear variation in the microcavity width [33] results
in variation of detuning between the cavity photon and
exciton: ∆ = Eph − Eex. The change in the energies of
the two dipole modes with changing detuning is shown
in Fig. 2(a), where a clear crossing of the corresponding
energy levels can be observed [36]. The transition to spec-
tral degeneracy is accompanied by an avoided crossing of
the imaginary parts of the eigenenergy (linewidths), as
seen in Fig. 2(b). Due to the high Q-factor of the mi-
crocavity (320, 000) and long lifetime of exciton polari-
tons (∼ 200 ps) [33], the resonances have a very narrow
linewidth, which helps to differentiate between closely
positioned energy levels.

From the energy-resolved spatial image of the cavity
photoluminescence, we reconstruct the spatial probabil-
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ity density distribution of the polariton condensate for
each detuning value. Away from the degeneracy, the two
dipole modes are clearly visible [Fig. 2(a), insets]. As
the two complex eigenvalues are tuned in and out of the
degeneracy, we observe the characteristic hybridisation
and switching of the modes corresponding to the two en-
ergy branches. Due to the finite resolution of spectro-
scopic measurements in our system, it is hard to tune
the system precisely to the EP, whereby both real and
imaginary parts of the complex eigenenergy, as well as
the eigenstates, would coalesce exactly. To confirm the
existence of an EP, we vary the second control parame-
ter, i.e., the width of the right half-ring of the resonator,
w (see Fig. 1). As its value changes from w = w1 to
w = w2 we observe the transition from crossing to an-
ticrossing in energy and from anticrossing to crossing in
the linewidths of the two resonances [see Figs. 2(c,d)].
This transition confirms that an EP exists in the param-
eter space (∆, w) [6, 27, 42]. Furthermore, by fixing the
detuning at ∆ = −3.6 meV, which corresponds to the
energy crossing in Fig. 2(a), and tuning w from w2 to
w1, we observe a vortex-like mode at w1 < w < w2, as
shown in Fig. 3(e).

In order to establish the nature of this state, we per-
form interferometry with a magnified (×15) reference
beam derived from a small flat-phase area of the photo-
luminescence. The energy-resolved interferometric imag-
ing confirms the phase structure of the two dipole modes
[Fig. 3 (a,b) and (c,d)] away from the degeneracy point.
Furthermore, the interference pattern shown in Fig. 3
(f) is stable for many minutes, and reveals a fork in the
fringes, which is a clear signature of a stable charge-one
vortex. This measurement confirms that a vortex with
the topological charge one is formed in the vicinity of
the spectral degeneracy, which is only possible if the two
dipole modes coalesce with the π/2 phase difference.

The deterministic nature of the vortex charge is tested
in our experiment by blocking the pump for up to 1 hour
to let the pump-injected reservoir disappear. After the
pumping is resumed, the sign of the vortex charge re-
mains the same. While the chirality of the mode is as-
sured by the EP, the particular sign of the vortex charge
is determined by the orientation of the pump relative to
the gradient of the cavity wedge [Fig. 1(b)], which pro-
duces a slight chiral asymmetry in the system (see SM
[34]).

Theory.—The dynamics of an exciton-polariton con-
densate subject to off-resonant (incoherent) optical
pumping can be described by the generalised complex
Gross-Pitaevskii equation for the condensate wave func-
tion complemented by the rate equation for the density
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FIG. 3: Experimentally observed (a,c,e) probability density
distribution of the exciton-polariton condensate and (b,d,f)
the corresponding interference pattern for the dipole modes
with (a,b) near-vertical and (c,d) near-horizontal nodal line,
and (e,f) for a charge one vortex state. In (b,d) the nodal
lines can be discerned by the relative shift in fringes. The
fork in the fringes marked by the dot in (f) signifies a charge-
one vortex. Parameters are: (a-d) ∆ = −3.8 meV, w ≈ 1.1
µm; (e,f) ∆ = −3.6 meV, w ≈ 1.1 µm.

of the excitonic reservoir [37]:

i~
∂ψ

∂t
=

{
− ~2

2m
∇2 + gc|ψ|2 + gRnR +

i~
2

[RnR − γc]
}
ψ,

∂nR
∂t

=P (r)−
(
γR +R|ψ|2

)
nR,

(1)
where P (r) is the rate of injection of reservoir particles
per unit area and time determined by the power and
spatial profile of the pump, gc and gR characterise the
interactions between condensed polaritons, and between
the polaritons and the reservoir, respectively. The decay
rates γc and γR quantify the finite lifetime of condensed
polaritons and the excitonic reservoir, respectively. The
stimulated scattering rate, R, characterises growth of the
condensate density.

Assuming that, under cw pumping, the reservoir
reaches a steady state, nR(r) = P (r)/

(
γR +R|ψ(r)|2

)
,

and that the exciton-polariton density is small near the
condensation threshold, Eq. (1) transforms into a linear
Schrödinger equation for the condensate confined to an
effective non-Hermitian potential [27]:

V (r) =VR(r) + iVI(r)

≈gRP (r)

γR
+ i

~
2

[
RP (r)

γR
− γc

]
.

(2)

As discussed in SM [34], the dependence on the de-
tuning, ∆, enters Eq. (1) through the dependence of
its parameters on the Hopfield coefficient that charac-
terises the excitonic fraction of the exciton polariton [18]:

|X|2 = (1/2)
[
1 + ∆/

√
∆2 + E2

R

]
, where ER is the Rabi

splitting at ∆ = 0.
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FIG. 4: Approximate complex effective potential and the typ-
ical profiles of the dipole modes: (a) V ′(r), (d) V ′′(r), (b) |ψ2|,
(c) |ψ2 + i ψ3|, (e) |ψ3|. Panel (f) depicts the phase distribu-
tion corresponding to (c).

The eigenstates and complex eigenvalues, Ẽ, of the
non-Hermitian potential (2) can be found by solving the
dimensionless stationary equation:[

−∇2 + (V ′ + iV ′′)
]
ψ = Ẽψ. (3)

where we have introduced the appropriate scaling [38].
The normalised real V ′(r) and imaginary V ′′(r) parts of
the potential depend on detuning via the Hopfield coef-
ficient [38] and are defined by the shape of P (r). For
simplicity, we approximate P (r) by Gaussian envelope
functions, with the resulting V ′(r) and V ′′(r) shown in
Fig. 4(a,d).

By solving the eigenequation (3) numerically and sort-
ing values of Ẽ in the ascending order of their real parts,
En, we obtain the corresponding hierarchy of eigenstates
ψn. Figures 4(b) and (e) show the moduli of ψ2 and ψ3,
respectively, which correspond to the slightly deformed
dipole states (1, 1). The existence of these steady states
is also confirmed by full dynamical simulations of Eq. (1)
(see SM [34]).

The dependence of the real and imaginary parts of the
dipole modes eigenenergies on the experimental control
parameters (∆, w) shown in Fig. 5 confirms that our sim-
ple linear model reflects the qualitative behaviour ob-
served in the experiment (Fig. 2).

To understand why the experimental control parame-
ters ∆ and w allow us to tune the system in and out of
the vicinity of the EP, we follow the standard approach
[2, 6, 27, 41], and construct a phenomenological coupled-
mode model for the two modes with the quantum num-
bers n and n′ near degeneracy (see SM [34] for details).
The effective two-mode Hamiltonian can be written as
follows:

Ĥ =

[
Ẽn q

q∗ Ẽn′

]
, Ẽn,n′ = En,n′ − iΓn,n′ , (4)
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FIG. 5: Behaviour of energy levels corresponding to the dipole
modes with the change of the exciton-photon detuning, ∆.
(a) Re[Ẽ] crossing and (b) Im[Ẽ] anti-crossing at w = w2.

(c) Re[Ẽ] anti-crossing and (d) Im[Ẽ] crossing at w = w1 <
w2. Panels (a,d) have two different y-axes to accentuate the
crossing. The real and imaginary parts of the ground state
eigenvalues are subtracted from the absolute values in (a-d)
[40].

where Ẽn,n′ are the complex eigenenergies of the uncou-
pled modes and q characterises their coupling strength.
The eigenvalues of the Hamiltonian (4) are λn,n′ =

Ẽ±
√
δẼ2 + |q|2, where Ẽ = (Ẽn+Ẽn′)/2 ≡ E+ iΓ, and

δẼ = (Ẽn − Ẽn′)/2 ≡ δE − iδΓ. The real and imaginary
parts of λn,n′ form Riemann surfaces with a branch-point
singularity in the space of parameters (δE, δΓ) [27], as
shown in SM [34]. At the EPs, iδẼEP = ±|q|, the eigen-
values coalesce, λn = λn′ . The eigenstates also coalesce
and form a single chiral state [2, 15]. In our system, the
two eigenstates corresponding to n = 2 and n′ = 3 are
dipole modes, and therefore the chiral state is a vortex
with a topological charge one, as shown in Fig. 4(c,f) and
Fig. 3(e,f).

The two parameters (δE, δΓ) can be related to the ex-
perimental parameters (∆, w). As discussed in SM [34],
increasing ∆ corresponds to increasing δE and moves the
system away from the spectral degeneracy, while increas-
ing w corresponds to decreasing δΓ. Therefore the vari-
ables ∆ and w allow us to control the approach to the
EP as demonstrated in the experiment (Fig. 2) and con-
firmed by theory (Fig. 5).

Discussion.—In summary, we have experimentally
demonstrated the chirality of an eigenstate of a non-
Hermitian macroscopic quantum coherent system of
Bose-condensed exciton polaritons in the vicinity of an
EP. The observed chiral eigenstate is a vortex with a well-
defined topological charge (orbital angular momentum),
which does not change its sign randomly between reali-
sations of the experiment [43, 44]. The controlled gen-
eration of a nontrivial orbital angular momentum state
protected by the topology of an EP could find use in low-
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FIG. 6: Experimentally measured (a) density and (b) inter-
ference image of the triple-vortex state. Theoretically cal-
culated (c) modulus and (d) phase of the triple-vortex state
ψ = (ψ7 + i ψ8) + (ψ9 + i ψ10). The three dots in (b) mark
the forks in the interference fringes.

energy polariton-based devices exploiting non-Hermitian
nature of exciton polaritons, in analogy to optical sys-
tems with engineered loss and gain [16, 17].

The vortices observed here, as well as other quantised
vortex flows created spontaneously [45, 46] or deliber-
ately [47–49] in the exciton-polariton condensate, are
identical to quantum vortices in atomic Bose-Einstein
condensates [50–54]. However, the techniques for cre-
ating vortices in different quantum fluids are different
[55]. Here we present a radically new way of generating
a quantum vortex by employing the intrinsic chirality at
an EP.

Furthermore, our technique for generating chiral
modes can be applied to higher-order orbital angular mo-
mentum states. In particular, if the inner size of the
ring, D, is increased, higher-order modes can be popu-
lated by the condensate and brought to degeneracy by
varying control parameters of the system. Moreover,
two (or more) EPs can be simultaneously created and
brought to a close vicinity of each other. As an ex-
ample, the higher-order orbital momentum state formed
in our experiment by hybridisation of two chiral modes,
ψ = (ψ7+i ψ8)+(ψ9+i ψ10), is shown in Fig. 6, together
with the prediction of our linear theory. The interferom-
etry image confirms that the vortices in the triple-vortex
state have the same topological charge (see also a double-
vortex state shown in SM [34]). These results open the
avenue for experimental studies of EP clustering [56, 57]
and higher-order EPs [58–62] in a macroscopic quantum
system.
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