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We experimentally demonstrate topological edge states arising from the valley-Hall effect in two-
dimensional honeycomb photonic lattices with broken inversion symmetry. We break inversion
symmetry by detuning the refractive indices of the two honeycomb sublattices, giving rise to a
boron nitride-like band structure. The edge states therefore exist along the domain walls between
regions of opposite valley Chern numbers. We probe both the armchair and zig-zag domain walls
and show that the former become gapped for any detuning, whereas the latter remain ungapped
until a cutoff is reached. The valley-Hall effect provides a new mechanism for the realization of
time-reversal invariant photonic topological insulators.

Photonic topological insulators (PTIs) are dielec-
tric structures that possess topologically protected edge
states that are under certain circumstances robust to
scattering by disorder [1–12]. There are two categories
of PTIs: those that break time-reversal symmetry [3, 7]
and those that preserve it [8, 9, 11]. In PTIs that break
time-reversal symmetry, there exist one-way edge states,
which ensure their robustness, due to the lack of counter-
propagating partners at same frequency. In those that
preserve it, there exist counter-propagating edge states
that are protected only against certain classes of disor-
der. However, the latter can be more straightforward to
realize because they do not require strong time-reversal
breaking. PTIs have been of interest due to the possibil-
ity of photonic devices that are less sensitive to fabrica-
tion disorder.

In the valley-Hall effect, broken inversion symmetry
in a two-dimensional (2D) honeycomb lattice causes op-
posite Berry curvatures in the two valleys of the band
structure [13, 14], and has been realized in solid-state 2D
materials [15–19]. The valley-Hall effect is time-reversal
invariant and has common characteristics with the spin
Hall effect [20], where the two valleys in the band struc-
ture are used as ‘pseudo-spin’ degrees of freedom. It
was shown theoretically that valley-Hall topological edge
states would arise in analogous photonic structures [21–
27]. In addition, valley-Hall topological edge states have
also been recently studied in the context of topological
valley transport of sound in sonic crystals [28].

Here, we present the experimental observation of pho-
tonic topological valley-Hall edge states at domain walls
between valley-Hall PTIs of opposite valley Chern num-
bers. The bulk-edge correspondence ensures the pres-
ence of edge states: the change in valley Chern num-
ber across the domain wall is associated with the ex-
istence of counter-propagating edge states [19, 29, 30].
We realize photonic valley-Hall topological edge states in
evanescently-coupled waveguide arrays, i.e., photonic lat-
tices, fabricated using the femtosecond direct laser writ-
ing technique [31]. We probe different types of domain
walls, namely the armchair and zig-zag edges. We also

enter a fully gapped regime, which is not accessible in
solid-state 2D materials. The topological protection as-
sociated with the valley-Hall effect applies as long as a
single valley is populated and does not mix with the other
valley. In general, disorder that has only low spatial fre-
quency components (i.e., is sufficiently smooth) will not
mix the valleys.

We begin by describing our experimental system,
which is composed of an array of evanescently-coupled
waveguides arranged in a honeycomb lattice geometry.
The laser-writing technique allows us to arbitrarily con-
trol the refractive index of the waveguides, by varying
the average power of the pulse train in the femtosecond
direct laser writing procedure. The geometries of lattices
having armchair and zig-zag edges at their domain wall
are depicted in Fig. 1(a) and (b), respectively (see Sup-
plemental Materials for microscope images [32]).

The interface is between two regions (top and bottom)
that are both honeycomb lattices with opposite signs
of the on-site energy detuning between the two compo-
nent sublattices, which breaks inversion symmetry within
each given lattice. Experimentally, the detuning is car-
ried out by controlling the refractive index of the waveg-
uide at each site. Fig. 1(c) shows the 2D bulk band
structure of the inversion-symmetry-broken honeycomb
lattice, clearly showing the two valleys. This is simply
an inversion-symmetry-broken variation of the photonic
honeycomb lattices described in Refs. [33–35], and as
in the graphene band structure, two valleys are located
at two non-equivalent K and K′ points in the first Bril-
louin zone. The valley Chern number is defined as the
difference in integrated Berry curvature associated with
the two valleys. Since the Berry curvature points in the
opposite directions (+z,−z) in the two valleys in a given
lattice, and the sign is given by that of the inversion-
breaking term, it follows that the top and bottom lattices
in Fig. 1(a,b) must have opposite valley Chern numbers
and thus have valley-protected edge states.

The diffraction of light through the waveguide array is
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FIG. 1. (a) Schematic diagram of inversion-symmetry-broken honeycomb lattices with armchair and (b) and zig-zag edge
domain walls. Red and green waveguides indicate different refractive index, and blue indicates straw waveguides. Red shaded
regions indicate domain walls. (c) Band structure of the inversion-symmetry-broken graphene defined by u1b1 + u2b2, where
b1 = 2π
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are reciprocal lattice vectors and a is the lattice constant. (d) Continuum edge band
structures with periodic boundary conditions on both x and y directions at λ=1650nm and ky=0 when the armchair or (e)
zig-zag edges are placed at the domain wall. (f-g) Corresponding band structures at λ=1450nm. Red and blue dashed lines
indicate energies of eigenmodes that are excited by coupling with the straw waveguide when we excited modes at mid-gap and
significantly below mid-gap, respectively. Green and red bands in (e,g) indicate edge states located at the domain wall close to
and far away from straw waveguides, respectively. Therefore, only the green bands are accessible in the experiment.

governed by the paraxial wave equation:

i∂zψ(r, z) = − 1

2k0
∇2

rψ(r, z)− k0∆n(r)

n0
ψ(r, z)

≡ Hcontψ(r, z),

(1)

where ψ(r, z) is the envelope function of the electric
field E(r, z) = ψ(r, z) expi(k0z−ωt) x̂, k0 = 2πn0/λ is the
wavenumber within the medium, λ is the wavelength of
the laser, ω = 2πc/λ, and ∇2

r is the Laplacian in the
transverse (x, y) plane. Hcont is the continuum Hamilto-
nian for propagation of the wave in the photonic lattice.
∆n is the refractive index of the waveguide relative to the
index of our medium, n0 = 1.47, which acts as an effec-
tive potential in the Schrödinger equation, Eq. (1). The
inversion symmetry of the lattice is broken by having dif-
ferent ∆nA and ∆nB for waveguides in sublattices A and
B, respectively, which is analogous to having different
on-site energies EA and EB in the condensed-matter con-
text. Furthermore, we write two additional waveguides,
which we call ‘straw waveguides’ (as discussed previously
in Ref. [36]) into which light is injected. The straws are
weakly coupled to the lattice, allowing them to act as an
external drive that is injecting light into the system with-
out altering the system’s intrinsic modes. Furthermore,
varying the refractive index of the straw, ∆ns, allows for
the control of the propagation constant (i.e., energy) of

the modes being injected into the structure. By analogy
with condensed-matter systems, the straw allows us to
control the effective ‘Fermi energy’ of the system, only
allowing coupling to modes of a given energy, E.

The emergence of valley-Hall topological edge states
is shown by a full-continuum calculation by diagonaliz-
ing Hcont in Eq. (1) of 2D inversion-symmetry-broken
honeycomb lattice ribbons. The unit cell is a strip that
is periodic in the horizontal direction (with a period-
icity given by the lattice constant), but is many unit
cells in the vertical direction and includes the domain
wall (in fact, it must contain a minimum of two do-
main walls). The eigenvalues of the Schrödinger oper-
ator given in Eq. (1) are the energies of the calculated
eigenmodes. Band structures and therefore bandgap sizes
can be engineered by sweeping across ∆E/c0, where
∆E = EA − EB , and c0 is the coupling strength be-
tween the nearest-neighbor waveguides. Experimentally,
∆E can be controlled by varying both ∆nA and ∆nB,
and c0 can be increased by decreasing the distance be-
tween the nearest-neighbor waveguides, d, and increasing
λ; calculated c0(λ) at fixed d=19µm for λ=1650nm and
λ=1450nm are 2.69cm−1 and 1.76cm−1, respectively (for
the remainder of the work, we logically order long wave-
length before short wavelength because the bandgap in-
creases with decreasing wavelength). Initial calibration
of c0(λ) is obtained by measuring beating in two cou-
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pled waveguides as a function of wavelength and distance.
Fig. 1(d,e) show band structures when armchair and zig-
zag edges are placed at the domain wall, respectively,
where λ=1650nm, d=19µm, ∆nA = 2.50 × 10−3, and
∆nB = 2.90× 10−3, and Fig. 1(f,g) show corresponding
band structures with same d, ∆nA and ∆nB but with
λ=1450nm. For both structures with armchair and zig-
zag edge domain walls, the bulk bandgap opens immedi-
ately as ∆E/c0 becomes nonzero. However, behaviors of
the edge states are different for each case: for the struc-
ture with the armchair domain wall, the edge bandgap
opens immediately after ∆E/c0 becomes nonzero (Fig.
1(d,f)). For the structure with the zig-zag domain wall,
there exist edge states at the mid-gap for small ∆E/c0
(Fig. 1(e)), which indicates the edge bandgap would open
only at finite ∆E/c0 (Fig. 1(g)). The two edge state
bands shown in green and red in Fig. 1(e,g) are local-
ized next to the straw waveguides (in the center of the
figure), and on the opposite termination (assuming peri-
odic boundary conditions), respectively. Therefore, only
the green bands will be physically accessible in the exper-
iment. This difference between the armchair and zig-zag
edges arises because the orientation of the armchair ter-
mination is such that it mixes the two valleys; since they
may scatter between them, this allows for a matrix ele-
ment for a gap to open even for small ∆E/c0. However,
the zig-zag edge runs parallel to the line that connects
the two valleys in k-space, implying that the presence of
the edge does not connect them, allowing them to remain
ungapped.

To experimentally observe the emergence of topologi-
cal edge states, a beam was launched at the input facet
of the sample through a lens-tipped fiber, which allows
coupling into a selected straw waveguide. The length of
the sample is 7cm where radii of major and minor axes
of the waveguides are 4.9µm and 3.2µm, respectively.
Here, the refractive index of the straw waveguides was
calibrated to inject light at the mid-gap and significantly
below the mid-gap, in different devices. The energies of
the straw waveguide modes were calculated by diagonal-
izing Hcont of a single waveguide. In Fig. 2, we present
the observed diffracted light at the output facet of the
array for the case of mid-gap driving (red-dashed lines
in Fig. 1(d-g)). Here, the calculated energy of the straw
waveguide modes at the mid-gap energy were −4.39c0
and −11.87c0 for 1650nm and 1450nm, respectively. We
plot the edge intensity ratio, which is the ratio of the
light intensity along the domain wall (Iedge) to the light
intensity in the straw, and the penetration ratio, which
is ratio of the intensity of light that penetrates into the
structure to the total light intensity (I). First, in the
photonic lattice with the armchair domain wall, we ob-
serve that most of the light coupled into the straw waveg-
uide stayed in the straw, not coupling into the waveguide
array (Fig. 2; see supplementary movie 1 [32]). Both
measured edge intensity ratio and penetration ratio were

relatively very small, which indicate the presence of the
bandgap between the edge modes: i.e., no edge states
are available to transport light through the array. This
experimental result agrees with the full-continuum cal-
culation having red-dashed lines not crossing any edge
states in the band structure as shown in Fig. 1(d,f). On
the other hand, from the analogous structure with zig-
zag domain wall, we observed a clear excitation of edge
states along the domain wall, which becomes more signif-
icant as wavelength is increased (Fig. 2; see supplemen-
tary movie 2 [32]). This indicates that at λ=1450nm,
the bandgap is fully open so that the straw waveguide
mode is not able to couple into the domain wall; but
as we increase λ to make ∆E/c0 subsequently decrease,
the bandgap becomes smaller and eventually edge states
couple with the straw waveguide mode at mid-gap. Fur-
thermore, the sharp increase in edge intensity ratio and
penetration ratio indicates that the edge state is topo-
logical and that there exist edge states having mid-gap
energy. This experimentally establishes the presence of
valley-Hall edge states at mid-gap for the zig-zag edge,
and the lack thereof for the armchair edge, consistent
with theoretical predictions described above.

FIG. 2. (a) Measured edge intensity ratio and (b) penetra-
tion ratio when we excite modes at mid-gap. Blue and red
dots are from zig-zag and armchair edge domain walls, respec-
tively. (inset) Diffracted light measured at the output facet.
Waveguides where light is injected are marked with yellow
dashed circle.

We further probe the valley-Hall edge states by chang-
ing ∆ns of the straw waveguides, while keeping ∆nA and
∆nB the same, such that we excite modes at a differ-
ent energy (blue-dashed lines in Fig. 1(d-g)). Here, the
calculated energies of the straw waveguide modes were
−4.98c0 and −13.22c0 for 1650nm and 1450nm, respec-
tively. For the armchair edge, the energy coincides with
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edge bands at λ=1650nm, but not at λ=1450nm (Fig.
1(d,f)). Therefore, we observe confinement to the in-
put straw waveguide at λ=1450nm followed by increased
penetration along the domain wall with increasing wave-
length and strong penetration by λ=1650nm (Fig. 3; see
supplementary movie 3 [32]). For the zig-zag edge, how-
ever, the energy does not coincide with the state along
the domain wall boundary (Fig. 1(b)), whose dispersion
is shown in green in Fig. 1(e,g), but rather the con-
fined state that arises on the opposite side of the system
when periodic boundary conditions are imposed in the
vertical direction, shown in red in Fig. 1(e,g). In other
words, since the only edge states localized near the straw
waveguide are those drawn in green, there is no penetra-
tion along the zig-zag edge for this energy. Therefore, no
penetration is observed in the entire wavelength range
for the zig-zag edge (Fig. 3; see supplementary movie 4
[32]).

FIG. 3. (a) Measured edge intensity ratio and (b) penetra-
tion ratio when we excited modes significantly below mid-gap.
Blue and red dots are measured zig-zag and armchair edge
domain walls, respectively. (inset) Diffracted light measured
at the output facet. Waveguides where light is injected are
marked with yellow dashed circle.

In order to confirm that the small edge intensity ra-
tio and penetration ratio measured at λ=1450nm is in-
deed the consequence of a large edge state bandgap, as
opposed to simply weak inter-waveguide coupling, we in-
jected light at the center of the domain wall such that
edge states are directly excited (Fig. 4(a) and (b)) - in
other words, we did not attempt to fix the energy by using
the straw. If the small penetration ratios were the result
of weak coupling strength between the nearest-neighbor
waveguides, the injected light would be expected to be
strongly confined at the center of the waveguide array,
where it is initially injected. However, for both waveg-

uide arrays with zig-zag and armchair domain walls, we
observed light diffracting along the domain wall and into
the bulk. There is significantly more diffraction along the
zig-zag edge as compared to the armchair edge because
the armchair edge band is nearly flat and the zig-zag
edge band is highly dispersive (see Figs. 1(d-g)). How-
ever, in both cases, there is clear diffraction into the bulk
of the structure, as is expected when we do not drive at
a fixed energy using the straw. Furthermore, we exam-
ine the case where the system has no inversion breaking
whatsoever, namely ∆nA=∆nB=∆ns. In this case, there
is no bandgap and therefore no edge state of any kind.
Upon injecting light into the straw waveguide, we ob-
serve strong diffraction into the bulk for both structures
shown in Fig. 1(a,b) of the zig-zag and armchair orien-
tation (Fig. 4(c,d)). Taken together, these results show
that the straw waveguide acts as a reliable ‘spectroscopy
tool’ for directly observing the presence in the valley-Hall
edge states in the wavelength range 1450nm-1650nm.

FIG. 4. (a) Diffracted light measured at the output facet
when we inject directly at the center of the zig-zag and (b) the
armchair domain walls. (c) Diffracted light measured at the
output facet when ∆nA=∆nB=∆ns and the straw waveguide
mode is initially excited for the zig-zag orientation and (d)
the armchair domain walls. All measurements are carried out
at λ=1450nm. Waveguides where light is injected are marked
with yellow dashed circle.

In summary, we have experimentally realized photonic
valley-Hall topological edge states in 2D honeycomb pho-
tonic lattices with broken inversion symmetry. We have
experimentally demonstrated that it is possible to open
very large bandgaps and therefore enter a fully gapped
regime even for the structure with zig-zag edge domain
walls, which was not possible in solid-state 2D materi-
als. Auxiliary straw waveguides placed at either end of
the domain walls made it possible to excite a desired
energy within the bulk bandgap, allowing for a conve-
nient spectroscopy tool for the waveguide array energies.
Being a time-reversal invariant system, the valley-Hall
effect could provide a straightforward route towards re-
alizing photonic topological edge states, particularly in
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an on-chip platform. Thus, while valley-Hall edge states
are not rigorously protected against any class of disor-
der, they will be protected against disorder that is suffi-
ciently smooth (and thus does not allow inter-valley scat-
tering). The linear, static, and non-magnetic nature of
the design will also allow for lower optical loss compared
to other approaches to topologically-protected photonic
states (for example, magnetic materials are typically very
lossy). Furthermore, the photonic valley-Hall effect could
provide a natural platform for photonic quantum simula-
tion of topological phenomena, perhaps by coupling the
photonic modes to atoms or excitons.

During the writing of the manuscript, we became aware
of an analogous work in the microwave regime [37].
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