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Amplification of optical or microwave fields is often achieved by strongly driving a medium to
induce population inversion such that a weak probe can be amplified through stimulated emission.
Here we strongly couple a superconducting qubit, an artificial atom, to the field in a semi-infinite
waveguide. When driving the qubit strongly on resonance such that a Mollow triplet appears,
we observe a 7% amplitude gain for a weak probe at frequencies in-between the triplet. This
amplification is not due to population inversion, neither in the bare qubit basis nor in the dressed-
state basis, but instead results from a four-photon process that converts energy from the strong drive
to the weak probe. We find excellent agreement between the experimental results and numerical
simulations without any free fitting parameters. Since our device consists of a single two-level
artificial atom, the simplest possible quantum system, it can be viewed as the most fundamental
version of a four-wave-mixing parametric amplifier.

PACS numbers: 42.50.Gy, 85.25.Cp

Superconducting qubit circuits are playing an impor-
tant role in the development of solid-state quantum
computation [1-3], where they already have been used
in implementations of quantum logic gates and algo-
rithms [4, 5]. However, in the past decade, superconduct-
ing qubit circuits have also become a prominent platform
for quantum-optics research. This development origi-
nated from the achievement of strong coupling in the cir-
cuit version of cavity quantum electrodynamics, where a
superconducting qubit acts as a substitute for the atom
and a strip-line waveguide replaces the optical cavity [6].
In this context, a broad range of phenomena from atomic
physics and quantum optics [7, 8], e.g., lasing [9-11],
have been demonstrated in solid-state systems. Some
of these phenomena, e.g., electromagnetically induced
transparency [12-17], can be demonstrated with greater
clarity and sophistication than in corresponding experi-
ments with natural atoms.

The additional capabilities in quantum optics with
superconducting circuits stems partly from the tunable
and designable nature of the superconducting qubits as
two-level (or multi-level) systems, and partly from the
ease with which strong coupling can be achieved be-
tween these artificial atoms and quantum fields. The
latter property has permitted the demonstration of ultra-
strong coupling [18-21], going beyond the physics of the
rotating-wave approximation and the Jaynes-Cummings
model, and the dressed Zeno effect [22] with the coupling
taking place in a resonator. With the coupling being
between a superconducting qubit and an open waveg-
uide [23-28] instead, it has made possible the demon-
stration of, e.g., the Mollow triplet [23, 29, 30] and single-
photon routing [31]. If one truncates the open waveguide,

forming a semi-infinite space with the qubit placed close
to the endpoint (equivalent to placing an atom in front
of a mirror [32]), the qubit becomes strongly coupled to
a single input-output channel. Such a setup has been
used to demonstrate a giant cross-Kerr phase shift with
a probe and a signal field interacting with different tran-
sitions in a three-level artificial atom [33].

In this Letter, we leverage the excellent characteristics
of a superconducting qubit at the end of a transmission
line to demonstrate amplification in a two-tone experi-
ment. We find that, when a strong resonant drive field
splits the qubit transition into a Mollow triplet, a weak
probe field is amplified if it is tuned to the frequencies
between the resonances in that triplet. This is in accor-
dance with another theoretical prediction by Mollow [34].
Previous experiments with many natural atoms [35] and
a single quantum dot [36] have reported similar ampli-
fication, but only at levels of 0.4% and 0.005%, respec-
tively. In our experiment, we measure amplitude gain
reaching up to 7%. We note that the amplification mech-
anism does not rely on population inversion, as in another
experiment with a superconducting three-level artificial
atom in an open waveguide [37], nor even population in-
version between dressed states, as in another such experi-
ment [38] and some implementations of lasing without in-
version [39]. Instead, the amplification can be explained
in terms of higher-order processes with stimulated emis-
sion and transitions between dressed states [40]. Our
system thus cannot be compared directly with conven-
tional parametric amplifiers in terms of gain due to their
different amplification mechanisms.

The amplification we observe is an example of degen-
erate four-wave mixing. Four-wave mixing [41, 42] has



been implemented both at optical frequencies, e.g., in
photonic crystals [43, 44], and at microwave frequencies,
e.g., using superconducting circuits with nonlinear res-
onators [45]. In contrast to those implementations, our
device represents the fundamental limit of a four-wave
mixer, since our mixer only consists of a single two-level
atom.

The device used in our experiment is shown in
Fig. 1(a). A transmon qubit [46] is embedded at the
end of a one-dimensional transmission line with charac-
teristic impedance Z; ~ 50€2. We denote the ground
state, the first excited state, and the second excited state
of the transmon by |0), |1), and |2), respectively. The
|0) > |1) transition energy of the transmon is hwio(P) =
/8E;(®P)Ec — E¢; it is determined by the charging en-
ergy Ec = €2/2Cy, where e is the elementary charge
and Cy is the total capacitance of the transmon, and
the Josephson energy E;(®) = Ej|cos(m®/Pg)|. The
Josephson energy can be tuned from its maximum value
E; by the external flux ® of a magnetic coil; &g = h/2e
is the magnetic flux quantum. Due to the position of the
transmon at the end of the transmission line, the field
emitted from the transmon can only propagate in one di-
rection. The diagram in Fig. 1(a) also illustrates the rest
of the experimental setup. The pump field at frequency
wpump and the probe field of frequency wy, are fed into the
transmission line via a combiner and several attenuators.
The output signal is amplified and measured in a vec-
tor network analyzer (VNA) to determine the amplitude
reflection coefficient r of the probe field.

The origin of the amplification is illustrated in
Fig. 1(b), following Ref. [40]. The two-level structure
of the qubit becomes dressed by the strong resonant
(Wpump = wio) pump with Rabi frequency Qpump, form-
ing the dressed states which have transitions at the
Mollow-triplet frequencies wig and wig £ Qpump. Since
the drive is resonant, all states are equally populated; no
population inversion occurs. When wp, = wig £ Qpump,
the equal population of all states leads to absorption and
stimulated emission being equally likely, which means
that the probe experiences neither gain nor attenua-
tion. If |wp —wio] > Qpump, a three-photon process
that leads to absorption dominates. However, when
V2193 /Qpump < [wp — wio] < Qpump [34], four-photon
processes like the ones shown in Fig. 1(b) dominate and
lead to amplification. Here, I'y is the relaxation rate and
v is the decoherence rate for the qubit.

Before performing the amplification experiments, we
first characterize our device spectroscopically. In
Fig. 2(a), we show the amplitude reflection coefficient |r|
of a weak probe (amplitude Q, < 7) as a function of
the external flux ®. We clearly see the ® dependence
of the wyg transition frequency. The transmon also has
higher levels. To see the next transition, between |1) and
|2) at frequency wa;, we use two-tone spectroscopy. We
saturate the |0) <« |1) transition by applying a pump
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Figure 1. Experimental setup and amplification mechanism.
(a) A simplified schematic of the device and the setup for
the experiment. The transmon qubit, our artificial atom, is
formed by two superconducting islands (center of the image)
coupled through two Josephson junctions and a large capac-
itance. The qubit sits at the end of the transmission line
formed by the center conductor and ground planes pictured
here. The microwave pump and probe tones are generated at
room temperature, combined at 3, and fed through attenua-
tors to the qubit in a cryostat cooled to 12mK. The output
signal is measured in a vector network analyzer (VNA). (b)
Two energy-level diagrams showing how the weak probe is am-
plified in our setup. The strong pump with amplitude Qpump
dresses the energy levels of the bare two-level qubit. The
left part shows one of the two irreversible four-photon pro-
cesses that leads to the stimulated emission of a photon at the
probe frequency wp (blue arrow) when wpump + Qpump > wp >

wpump + /21173 /Qpump, and the right part shows the same

for the case wpump — 1v/2I'173/Qpump > Wp > Wpump — Lpump-
In these processes, two pump photons (green arrows) are ab-
sorbed and an additional photon (red wavy arrow) is scat-
tered at frequency ws = 2wpump — wp. This closely resembles
degenerate four-wave mixing in a parametric amplifier if we
identify wpump as the frequency of the pump mode, wy as the
frequency of the signal mode, and ws as the frequency of the
idler mode. Note that an important part of the processes is
that the two virtual states shown with dashed lines are con-
nected by the strong pump. This increases the probability
of the process occurring, since these virtual states are within
the power-broadening width of the pump. The empty and
filled circles and squares are used to mark the corresponding
transitions in Fig. 3(b).

field at wip with pump power Pyymp = —119dBm, and
measure the reflection of a weak probe at w,. As can be
seen in Fig. 2(b), we observe photon scattering from the
[1) <> |2) transition, which appears as a dip in the reflec-
tion at wp, = wai. We also observe that the strong res-
onant pump dresses the |0) «> |1) transition, giving rise
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Figure 2. Spectroscopy of the transmon qubit. (a) Single-tone
spectroscopy. Amplitude reflection coefficient |r| as a function
of probe frequency wp and flux ®. The red dashed curve is a
fitted theory curve for wig. (b) Two-tone spectroscopy. We
once again show |r| for the weak probe as a function of w, and
®, but in this experiment a second, strong microwave drive is
applied at wip. The broad green region that appears in the
response corresponds to the |1) <+ |2) transition at frequency
w21. The black dashed curve is a fitted theory curve for wo;.
We also see the features of the Mollow triplet around wio and
note that the features of this triplet can be tuned by the flux.

to three resonances around wyg. This is the well-known
Mollow triplet, which we study further in the amplifica-
tion experiments below.

From Figs. 2(a,b), we extract E; = 7.97GHz, Ec =
390 MHz, wio(®), and wo1(P). We then perform fur-
ther single-tone scattering experiments at ®/®y = 0 as
in Ref. [33]. From the magnitude and phase of the re-
flection coefficient for a weak probe as a function of wy,
we extract I'y, the pure dephasing I'y, and . Measur-
ing r as a function of the probe power P, we extract
the coupling constant k relating the input power to the
Rabi frequency according to €,/27 = kv/P. All the ex-
tracted parameters are summarized in Table I. We note
that I'y is dominated by the coupling to the transmission
line and greatly exceeds I'y, placing our system in the
strong-coupling regime.

We now investigate the Mollow-triplet structure fur-
ther by fixing the flux at ® = 0 and the pump frequency
at Wpump = wio. We record the reflection coefficient |r| of
a weak probe as a function of both wy, and pump power,
increasing Ppump from —130dBm to —105dBm. The re-
sult is shown in Fig. 3(a). To the left in the figure, around
wp/2m = 4.2 GHz, we see scattering from the [1) > |2)
transition, which becomes possible because the resonant
pump populates the first excited state of the qubit. As
the pump power increases, this feature splits into two
dips in the reflection, which corresponds to an Autler-
Townes doublet [16, 17, 54]. Increasing the pump power,
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Figure 3. Gain and attenuation around the Mollow triplet.
(a) Reflection coefficient |r| as a function of probe frequency
and pump power at ® = 0. The pump frequency wpump is
fixed at 4.59 GHz, which is the transition frequency wio. (b)
A numerical simulation of the experiment using the parame-
ters in Table I and N = 5 energy levels for the transmon. The
simulation [47] applies quantum linear-response theory [48]
similar to Refs. [49, 50], using methods from Ref. [51] imple-
mented in QuTiP [52, 53]. The solid black curves indicate the
position of the Mollow triplet at wpump and wWpump £ Qpump-
The red curves correspond to the expected inner amplification
boundaries wpumpE1/2I'173/Qpump. The empty and filled cir-
cles and squares correspond to the frequencies for stimulated
emission and scattering for the four-photon processes sketched
in Fig. 1(b). (c) Three line cuts at different pump powers:
—123dBm, —117dBm, and —114 dBm. We observe three dips
around wio, close to the Mollow triplet resonances. We also
observe two amplification peaks in-between these dips. The
gain, which reaches about 7% for Ppump = —114dBm, is due
to stimulated emission in higher-order processes as explained
in Fig. 1(b). We note again that the amplification is not due
to population inversion. (d) The corresponding line cuts from
the numerical simulation.

we also see the resonance around wpg separate into a
Mollow-triplet-like structure. The central transition be-
comes weaker at higher powers (the delta peak/dip in
the data exactly at wig is an artifact of the pump, unre-
lated to the qubit response) and areas with greater-than-
unity reflection, |r| > 1 (purple color), appear in-between
the three dips. This is further illustrated in Fig. 3(c),
which shows three line cuts at different pump powers.
The two reflection peaks correspond to gain arising from
conversion between pump and probe photons, mediated
by the superconducting artificial atom, as explained in
Fig. 1(b). We emphasize that this gain is not a result of
population inversion, not even among the dressed states.

The maximum gain we observe is about 7%, at
Pyump = —114dBm. We note that the two gain peaks are
asymmetric, unlike what Mollow predicted for a two-level
atom. We attribute this asymmetry to influence from the



EJ,()/h [GHZ] Ec/h [GHZ] EJ,()/EC w10/27r [GHZ]

wa1/2m [GHz]|T'1 /27 [MHz]|T'y /27 [MHz]|v/27w [MHz]

7.97 0.39 20.4 4.59

4.2 45 2.7 25.2

Table I. Extracted parameters of the device.
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Figure 4. Reflection coefficient |r| of a weak probe as a function of wp (x axis) and wpump (y axis) at & = 0 for four different
pump powers: (a) —130dBm, (b) —125dBm, (¢) —120dBm, and (d) —115dBm. The top row is experimental data and the
bottom row is numerical simulations, performed in the same way as in Fig. 3 using the parameters in Table I (no free fitting
parameters). As we increase the pump power, the features at wio/2m = 4.59 GHz and w21 /27 = 4.2 GHz split into a more
complicated response, which can be explained in terms of the Mollow triplet due to pumping of the |0) <+ |1) transition [solid

black lines in (d)] and the Autler-Townes doublet due to pumping of the |1) > |2) transition [dashed black lines in (d)].

second excited state of the transmon qubit. Note that
each probe photon at most can stimulate the emission of
one photon at the same frequency. This fundamentally
limits the amplitude gain to v/2. At the maximum gain,
we estimate the noise temperature of our amplifier to be
102mK [47]. At this pump power, we have gain (|r| > 1)
in a bandwidth of 247 MHz. Within this bandwidth, the
average power gain is 1.06, giving a gain-bandwidth prod-
uct of 262 MHz.

In Fig. 4, we investigate the effect of pump detuning.
We sweep the frequencies of both a weak probe and a
strong pump, changing the pump power in steps from
—130dBm in Fig. 4(a) to —115dBm in Fig. 4(d). The
agreement between the experimental data in the top row
of Fig. 4 and the numerical simulations in the bottom
row, performed without any free fitting parameters, is
excellent. In the left parts of Fig. 4, we see expected res-
onances when wy,/2m = wyo/2r = 4.59 GHz and when
Wpump = W10,Wp/2T = wo1/27 = 4.2GHz. As pump
power increases in the right parts of the figure, we ob-
serve features of the Mollow triplet when pumping at
4.59 GHz [solid black lines in Fig. 4(d)] and of an Autler-
Townes doublet when pumping at 4.2 GHz [dashed black
lines in Fig. 4(d)]. In Fig. 4(d), we also observe regions

of gain (purple color). When the pump is resonant with
w10/27 at 4.59 GHz, the gain mechanism is the one dis-
cussed in Figs. 1 and 3. When the pump is off resonance,
away from 4.59 GHz, we see gain close to one of the two
sidebands of the Mollow triplet. Such gain is due to pop-
ulation inversion among the dressed states [39], making it
easier to achieve than the inversionless amplification we
demonstrated above, as evidenced by experiments with
natural atoms [35, 55] and with a superconducting qubit
in an open transmission line [38].

In summary, we have demonstrated amplification of
a weak probe by about 7% using a single resonantly
pumped superconducting artificial atom placed at the
end of a transmission line. The amplification does not
rely on population inversion, not even in the dressed-
state basis, but instead results from a four-photon pro-
cess. This means that our artificial atom can be seen as
the ultimate miniaturisation of a four-wave-mixing para-
metric amplifier, since no simpler quantum system exists.
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