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Dilute-gas Bose-Einstein condensates are an exceptionally versatile testbed for the investigation of novel soli-
tonic structures. While matter-wave solitons in one- and two-component systems have been the focus of intense
research efforts, an extension to three components has never been attempted in experiments. Here, we exper-
imentally demonstrate the existence of robust dark-bright-bright (DBB) and dark-dark-bright (DDB) solitons
in a multicomponent F = 1 condensate. We observe lifetimes on the order of hundreds of milliseconds for
these structures. Our theoretical analysis, based on a multiscale expansion method, shows that small-amplitude
solitons of these types obey universal long-short wave resonant interaction models, namely Yajima-Oikawa sys-
tems. Our experimental and analytical findings are corroborated by direct numerical simulations highlighting
the persistence of, e.g., the DBB soliton states, as well as their robust oscillations in the trap.

PACS numbers: 03.75.Mn, 03.75.Lm

Solitons are localized waves propagating undistorted in
nonlinear dispersive media. They play a key role in numerous
physical contexts [1]. Among the various systems that sup-
port solitons, dilute-gas Bose-Einstein condensates (BECs)
[2, 3] provide a particularly versatile testbed for the investiga-
tion of solitonic structures [4–6]. In single-component BECs,
solitons have been observed either as robust localized pulses
(bright solitons) [7–11] or density dips in a background matter
wave (dark solitons) [12–21], typically in BECs with attrac-
tive or repulsive interatomic interactions, respectively. Ex-
tending such studies to two-component BECs has led to rich
additional dynamics. Solitons have been observed in binary
mixtures of different states of the same atomic species, so-
called pseudo-spinor BECs [22, 23]. In particular, dark-bright
(DB) [16, 24–27], related SO(2) rotated states in the form
of dark-dark solitons [28, 29], as well as dark-antidark soli-
tons [30], have experimentally been created in binary 87Rb
BECs. Interestingly, although such BEC mixtures feature re-
pulsive intra- and inter-component interactions, bright soli-
tons do emerge due to an effective potential well created by
the dark soliton through the inter-component interaction [31].
Such mixed soliton states have been proposed for potential ap-
plications. For example, in the context of optics where these
structures were pioneered [32, 33], the dark soliton compo-
nent was proposed to act as an adjustable waveguide for weak
bright solitons [34]. In multicomponent BECs, compound
solitons of the mixed type could also be used for all-matter-
wave waveguiding, with the dark soliton building an effective
conduit for the bright one, similar to all-optical waveguiding
in optics [35]. Apart from pseudo-spinor BECs, such mixed
soliton states have also been predicted to occur in genuinely
spinorial BECs, composed of different Zeeman sub-levels of
the same hyperfine state [36–38]. Indeed, pertinent works
[39, 40] have studied the existence and dynamics of DB soli-
ton complexes in spinor F = 1 BECs. However, experimental
observation of such states has not been reported so far.

Here we report on the systematic experimental generation
of three-component DB soliton complexes, of the dark-bright-
bright (DBB) and dark-dark-bright (DDB) types, in an F = 1
condensate of 87Rb atoms. While DB solitons normally con-
sist of two atomic states (e.g., two F = 1 Zeeman sublevels
or a combination of Zeeman sublevels of F = 1 and F = 2
states of 87Rb [24–29]), here we use all three Zeeman F = 1
sublevels to generate three-component solitons in an elon-
gated atomic cloud. In our theoretical analysis, we employ
a multiscale expansion method to derive such vector soliton
solutions of the pertinent Gross-Pitaevskii equations (GPEs).
We show that DBB and DDB solitons can be approximated
by solutions of Yajima-Oikawa (YO) systems [41–43]. We
thus provide a connection with universal long-short wave res-
onant interaction (LSRI) processes [44, 45] which appear in a
wide range of contexts, including hydrodynamics [45], plas-
mas [41, 44], condensed matter [42], nonlinear optics [46],
negative refractive index media [47], etc. Such a connection
allows for an approximate analytical description (based on the
YO picture) of F=1 spinor solitons and yields, in turn, impor-
tant information on the relevant spatial and temporal scales,
where these structures can be observed. It also allows for a
systematic study on their dynamics, in terms of direct numer-
ical simulations. Indeed, such simulations (and associated nu-
merical initializations) are used to corroborate our experimen-
tal and analytical identification of these solitonic structures.

To begin our discussion of the three-component solitonic
structures, we first present examples for their realization in
experiments. The three components are given by the three dif-
ferent Zeeman sublevels of the F = 1 state of 87Rb, and are
designated by their magnetic quantum numbers |F,mF 〉 =
|1,−1〉, |1, 0〉 and |1,+1〉. The experiments begin with a
single-component BEC of approximately 0.8 × 106 atoms.
The atoms are confined in an elongated harmonic trap with
frequencies {ωx, ωy, ωz} = 2π × {1.4, 176, 174} Hz, where
z is the vertical direction. The trap is formed by a focused



2

dipole laser beam and is independent of the atomic hyperfine
state. A magnetic bias field of 45.5 G is applied along the
weakly confining direction. This field leads to a Zeeman split-
ting of the energy levels. As a consequence, populations can
be transferred between the three states by using adiabatic radio
frequency (RF) sweeps. Due to the quadratic Zeeman shift,
spin-changing collisions are energetically suppressed in the
experiment. However, we have also confirmed by means of
direct numerical simulations that the results in the theoretical
considerations below do not change upon inclusion of small
to moderate values of the quadratic Zeeman effect [37, 48].

To generate DBB solitons such as the ones shown in
Fig. 1(a), we begin with all atoms in the |1,−1〉 state. A small
fraction of atoms is uniformly transferred to the |1, 0〉 state
using a RF sweep. Subsequently, a weak magnetic gradient is
applied along the long axis of the BEC (i.e., the x-axis) for ap-
proximately 2−3 sec. Since the states have different magnetic
moments, this induces superfluid-superfluid counterflow and
leads to the formation of DB solitons; see details of this tech-
nique in Refs. [24, 28]. In the present experiment, the dark
solitons reside in the |1,−1〉 state and the bright component is
formed by the |1, 0〉 state. After the removal of the gradient,
a second RF transfer moves a fraction of the atoms from the
|1, 0〉 state to the |1,+1〉 state, forming DBB solitons. After
a variable evolution time during which the solitons are kept
in the trap, a Stern-Gerlach imaging technique is used to indi-
vidually image all three components in one single run of the
experiment [49]. In many runs, DBB solitons can be observed
at times up to several seconds after their creation. Decaying
solitons feature an increased filling of their dark notch with
atoms of the dark component, while the bright components
lose confinement and form diffuse cloudlets –cf. Fig. 1(b).

To theoretically trace the formation of compound soliton
structures, we resort to mean-field theory. In this framework,
the wave functions ψ±1,0(x, t) of the three hyperfine compo-
nents (mF = ±1, 0) of a quasi one-dimensional F = 1 spinor
BEC obey the following GPEs [39, 40, 50, 51]:

i∂tψ±1 = Lψ±1 + λa
(
|ψ±1|2 + |ψ0|2 − |ψ∓1|2

)
ψ±1

+ λaψ
2
0ψ̄∓1, (1a)

i∂tψ0 = Lψ0 + λa
(
|ψ1|2 + |ψ−1|2

)
ψ0

+ 2λaψ−1ψ̄0ψ+1, (1b)

where L = − 1
2∂

2
x+V (x) +λs

(
|ψ−1|2 + |ψ0|2 + |ψ1|2

)
and

V (x) = (1/2)Ω2x2, with Ω = ωx/ω⊥. We use ωx = 1.4 Hz
and ω⊥ = 175 Hz, as per the experimental set up. Finally, the
coupling coefficients for “symmetric” spin-independent and
“antisymmetric” spin-dependent interaction terms are given
by λs = 2

3 (a0 + 2a2) /a⊥ and λa = 2
3 (a2 − a0) /a⊥, re-

spectively, where a0 and a2 correspond to s-wave scattering
lengths of two atoms in the scattering channels with total spin
F = 0 and F = 2, and a⊥ =

√
~/(Mω⊥), with M being

the atomic mass of Rb. In our case, λs ≈ 5.2 × 10−3 and
λa ≈ −2.4× 10−5, i.e., λa/|λs| is a small parameter.

Based on this fact, it can readily be observed that –in
the absence of the trap, and ignoring the spin-dependent

FIG. 1: (Color online) a) Experimental ToF image of a DBB soliton
(boxed). To verify the stability of the soliton, a 100 ms in-trap evo-
lution time was applied after DBB soliton formation. The relative
population of the three states |1,−1〉, |1, 0〉 and |1, 1〉 is 97:2:1. b)
At longer times the solitons start to decay. Two stable solitons (1
& 3) are present next to two decaying solitons (2 & 4) after 400 ms
of in-trap evolution. c) Soliton oscillation in the harmonic trap. Six
images were taken at each 400 ms interval.

interactions– the GPEs (1a)-(1b) reduce to the completely in-
tegrable Manakov system [53]. This model admits vector soli-
ton solutions of the mixed type (i.e., DB soliton complexes
–cf., e.g., Ref. [54]) which may persist in the presence of the
spin-dependent terms of Eqs. (1a)-(1b) and the trap. To make
our point stronger, and to better understand the role of the
spin-dependent nonlinear interatomic interactions, we exploit
the smallness of λa/|λs| and employ (for V (x) = 0) a multi-
scale expansion method to find approximate soliton solutions
of Eqs. (1a)-(1b). Here, instead of using a single-mode ap-
proximation [51, 52] for the “symmetric” states |1,−1〉 and
|1,+1〉 as in Ref. [39], we impose nontrivial boundary condi-
tions for the |1,−1〉 component and trivial ones for the |1, 0〉
and |1,+1〉 components, to derive DBB soliton solutions for
sublevels mF = −1, 0,+1, respectively. We can thus show
(see Supplemental Material [55] for details, which includes
Refs. [56–59]) that the wave functions of DBB solitons take
the following form:

ψ−1 ≈
√
n0 + εn(X,T )e−iµ−1t+iε

1/2C−1(λs+λa)
∫
ndX ,

ψ0,+1 ≈ ε3/4q0,+1(X,T )ei[Cx−( 1
2C

2+µ0,+1)t],
(2)

where ε is a formal small parameter, µ∓1 = (λs ± λa)n0
and µ0 = λsn0 are the chemical potentials of the three
components, while n0 and C2 = µ−1 denote, respectively,
the steady-state density and the (squared) speed of sound
of the |1,−1〉 component. Finally, the functions n(X,T )
and q0,+1(X,T ), which depend on the stretched variables
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FIG. 2: (Color online) Top panel: Numerical simulation of the evo-
lution of the densities |ψ−1|2 (top), |ψ0|2 (middle), and |ψ+1|2 (bot-
tom) as per Eqs. (1a)-(1b) in the case where a small spatial displace-
ment of the DBB structure is initiated at t = 0. It is observed that
robust oscillations of the DBB structure persist for several seconds.

X = ε1/2(x− Ct) and T = εt, obey the system:

∂Tn = −√µ−1∂X
(
|q0|2

)
− µ+1√

µ−1
∂X
(
|q+1|2

)
,

i∂T q0 + 1
2∂

2
Xq0 −

µ0

n0
nq0 = 0,

i∂T q+1 + 1
2∂

2
Xq+1 − µ+1

n0
nq+1 = 0.

(3)

The above system, which models long-short-wave resonance
(LSRI) interaction [44], is the multicomponent generaliza-
tion of the so-called Yajima-Oikawa (YO) system, originally
derived to describe the interaction of Langmuir and sound
waves in plasmas [41]. In fact, Eqs. (3) constitute the so-
called multicomponent YO (mYO) system, originally intro-
duced in the context of many-component magnon-phonon
systems [42], which generalizes the YO model [43]. This
model has recently attracted considerable attention due to its
variety of solutions and interesting soliton collision properties
[60–62]. Similarly to the single-component YO model, the
mYO system is completely integrable, and possesses soliton
solutions of the form [60]: n ∝ −sech2(KsX − ΩsT ) and
q0,+1 ∝ sech(KsX − ΩsT ), where Ks, Ωs are constants.
When substituted into Eqs. (2), these expressions give rise
to approximate DBB solitons, for the mF = −1, 0,+1 spin
components, respectively.

Direct numerical simulations corroborate our experimental
and analytical findings. In the performed simulations, the
total number of atoms and energy of the system (cf., e.g.,
Ref. [51] for definitions) are conserved up to a negligible er-
ror. First, we have found (results not shown here) that the
above mentioned small-amplitude solitons persist for large

amplitudes. Second, apart from the traveling DBB solitons,
we were also able to identify robust stationary such struc-
tures in the presence of the trap. A solution is constructed by
identifying, at first, a stationary DB soliton state of the form

ψ−1(x, 0) =
√
λ−1s [µ−1 − V (x)] tanh(

√
µ−1x), ψ0(x, 0) =

Asech(
√
µ0x) and ψ+1(x, 0) = 0. Then, in line with our

experimental protocol, switching on a Rabi coupling between
components |1, 0〉 and |1,+1〉 for a finite time interval, atoms
are transferred to ψ+1 and a bright soliton is formed there too.
After switching off the Rabi coupling between ψ0 and ψ+1,
the percentage population of atoms in the three components is
97 : 2 : 1. We have also performed numerical simulations for
the DBB solitons in the presence of a trap, in the case where
the soliton is displaced from the trap center. We have con-
firmed in such a case that the DBB solitons generically per-
form robust oscillations inside the trap. A typical example is
shown in Fig. 2 illustrating that –despite the potential presence
of sound waves inside the condensate– the oscillation persists
for very long times of the order of many seconds. In this set-
ting, we have also developed an approximate characterization
of the oscillation frequency ω of the DBB solitons given by:

ω2 =
Ω2

2

1− Nb

4
√
µ+ (Nb

4 )2

 , (4)

for chemical potential µ of the dark component, and total
atomic population for the bright components equal to Nb =
Nb,1+Nb,2 (where subscripts 1 and 2 denote the bright soliton
components) confined by a parabolic trap of strength Ω. The
detailed explanation of this result, stemming from the work
of [63] for DB solitons (see also [64] for dark solitons), is
provided in the Supplementary Material [55]; there, the re-
sult (4) is also systematically corroborated by means of direct
numerical simulations, showing that it is always within 7.5%
of numerically identified DBB oscillation frequency.

Oscillatory motion of DBB solitons is also observed in
our experiments. For typical parameters, the experimentally
observed periods are on the order of many seconds, on the
same order of magnitude as seen, e.g., in the numerical re-
sults of Fig. 2. Preliminary experimental results are presented
in Fig. 1(c). A precision study, however, requires addressing
numerous technical issues (including, e.g., the slow decay in
atom numbers over the course of the oscillation and the vari-
ability of the exact starting conditions) and is, thus, beyond
the scope of the current Letter.

Apart from DBB solitons, in our experiments we have also
observed the emergence of DDB ones, again with lifetimes
on the order of hundreds of milliseconds. To generate DDB
solitons, a procedure similar to that of the DBB soliton gener-
ation is followed. We begin with all atoms in the |1, 0〉 state. A
small fraction of atoms is then uniformly transferred from the
|1, 0〉 state to the |1,+1〉 state. Subsequently, a weak mag-
netic gradient is applied and leads to the formation of DB
solitons. In this experiment, the dark solitons reside in the
|1, 0〉 state, while the bright soliton components are formed by



4

FIG. 3: a) - c) Experimental ToF images of DDB solitons. Here it is
shown that the DDB solitons can be generated for a large variation
of the total relative populations of the |1,−1〉 , |1, 0〉 , and |1,+1〉
states (upper, middle, and lower cloud in each image, respectively).
In each case, to verify the stability of the soliton a 100 ms in-trap
evolution time is applied after DDB soliton formation. The relative
populations of the three states are a) 71 : 21 : 8 , b) 53 : 38 : 9 , and
c) 33 : 66 : 1. d) Integrated density profiles of the Zeeman levels of
image (c). The plots are offset in the y-dimension for clarity and to
mimic the spatial order of each state in the ToF image.

atoms in the |1,+1〉 state. After the DB solitons are formed,
the magnetic gradient is removed, which is necessary to en-
sure long lifetimes of the solitonic structures. To convert the
DB solitons into DDB ones, an RF sweep is used to transfer
an adjustable fraction of the atoms from the |1, 0〉 state to the
|1,−1〉 state. This completes the formation of a DDB soliton.
In our experiments, we have found that the DDB solitons (and
also the DBB solitons discussed above) have lifetimes on the
order of hundreds of milliseconds.

The existence of these features appears to be fairly insensi-
tive to the exact population ratio of the three Zeeman states.
For example, we have experimentally verified the existence of
DDB structures for different percentage population of atoms
in the three states including 71 : 21 : 8 , 53 : 38 : 9 , and
33 : 66 : 1. These results highlight the generic robustness of
the DDB structures. A pertinent example is shown in Fig. 3.

The formation of DDB solitons can also be predicted in the
framework of the multiscale expansion method [55]. In this
case, assuming approximately equal chemical potential for all
spin components, µ ≈ λs(1 + r2) (where n0 is the pertinent
steady-state density and r = |ψ0|/|ψ−1|), we can show that
DDB solitons do exist, and assume the following form:

ψ−1 ≈
√
n0 + ερ(X,T )e−iµt+iε

1/2√µ
∫
ρ(X,T )dX ,

ψ0 = rψ−1, ψ+1 ≈ ε3/4q(X,T )ei[
√
µx−(3/2)µt],

(5)

where ε is again a small parameter, X = ε1/2(x − √µt) and
T = εt are stretched variables, and the functions ρ(X,T ) and

q(X,T ) are governed by the equations:

∂T ρ = −√µ(λs + λa)∂X
(
|q|2
)
,

i∂T q + 1
2∂

2
Xq − (µ/n0)ρq = 0.

(6)

The above equations constitute the single component Yajima-
Oikawa (YO) system [41]. The YO system is completely
integrable and possesses soliton solutions of the form ρ ∝
−sech2(ksX − ωsT ) and q ∝ sech(ksX − ωsT ), where
ks, ωs are constants. These expressions, when substituted
into Eqs. (5), give rise to approximate DDB solitons, for the
mF = −1, 0,+1 spin components, respectively. Note that we
have found (results not shown here) that such DDB solitons
are also long-lived in our direct numerical simulations.

In conclusion, we have demonstrated the creation of dark-
bright-bright (DBB) and dark-dark-bright (DDB) solitons in
an F = 1 87Rb condensate. It was found that these struc-
tures are quite robust, featuring lifetimes on the order of sev-
eral hundreds of milliseconds, and can be formed for differ-
ent relative populations of atoms in the three Zeeman states.
We have employed a perturbative approach to show that these
mixed solitons can be approximated by solutions of the multi-
and single-component Yajima-Oikawa systems. This connec-
tion also underscores the breadth of relevance of these patterns
and supports their robustness. Direct numerical simulations
corroborate our results indicating that these solitons can per-
sist but also that they can robustly oscillate in the condensates.

The experimental, theoretical and numerical manifestation
of such states paves the way for a number of interesting stud-
ies in the future. For instance, it will be particularly relevant to
explore more systematically the dynamics and interactions of
the DBB and DDB solitons in quasi-one-dimensional settings,
comparing them with their integrable Yajima-Oikawa coun-
terparts [60–62]. Another possibility is to study generaliza-
tions of such spinorial states in higher dimensions, construct-
ing spinorial vortex-bright (or baby-skyrmion, or filled-core
vortex) states [4] to understand their dynamics and interac-
tions. Soliton interaction dynamics and stability over paramet-
ric variations (e.g., of the spin-dependent part of the Hamilto-
nian) would also be particularly relevant to consider even in
the one-dimensional case. More broadly, spinor BECs open
an avenue to proceed beyond 2-component soliton dynamics
that may yield exciting developments in the near future.
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