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We have used the Arecibo Telescope to carry out one of the deepest-ever integrations in radio astronomy,

targetting the redshifted conjugate satellite OH 18 cm lines at z ≈ 0.247 towards PKS 1413+135. The satellite

OH 1720 MHz and 1612 MHz lines are respectively in emission and absorption, with exactly the same line

shapes due to population inversion in the OH ground state levels. Since the 1720 and 1612 MHz line rest

frequencies have different dependences on the fine structure constant α and the proton-electron mass ratio µ,

a comparison between their measured redshifts allows one to probe changes in α and µ with cosmological

time. In the case of conjugate satellite OH 18 cm lines, the predicted perfect cancellation of the sum of the

line optical depths provides a strong test for the presence of systematic effects that might limit their use in

probing fundamental constant evolution. A non-parametric analysis of our new Arecibo data yields [∆X/X] =
(+0.97± 1.52)× 10−6, where X ≡ µα2. Combining this with our earlier results from the Arecibo Telescope

and the Westerbork Synthesis Radio Telescope, we obtain [∆X/X] = (−1.0 ± 1.3) × 10−6, consistent with

no changes in the quantity µα2 over the last 2.9 Gyr. This is the most stringent present constraint on fractional

changes in µα2 from astronomical spectroscopy, and with no evidence for systematic effects.

PACS numbers: 98.80.Es,06.20.Jr,33.20.Bx,98.58.-w

Introduction.— Over the last two decades, astronomical

spectroscopy of high-redshift galaxies has provided the most

sensitive probe of changes in fundamental “constants”, such

as the fine structure constant α and the proton-electron mass

ratio µ ≡ mp/me, with cosmological time. Such temporal

changes in low-energy constants like α and µ are a generic

feature of higher-dimensional theories aiming to unify gen-

eral relativity and the standard model of particle physics (e.g.

[1, 2]), and are hence of much interest. The astronomical stud-

ies are of particular importance as they allow us to test for

changes in the constants on Gyr timescales, which are typi-

cally inaccessible to laboratory studies (e.g. [3]).

The above astronomical techniques are based on compar-

isons between the measured redshifts of different spectral

lines in high-redshift galaxies, using transitions whose rest

frequencies have different (and known) dependences on a

given constant. At radio frequencies, a variety of meth-

ods, based on various atomic and molecular lines [4–7], have

been used to probe temporal changes in α and µ. For ex-

ample, comparisons between inversion and rotational transi-

tions in the z = 0.685 gravitational lens towards B0218+357

and between different methanol (CH3OH) transitions in the

z = 0.886 lens towards B1830−21 have yielded the most

stringent constraints on changes in µ from any technique,

[∆µ/µ] < 4 × 10−7 [8–10]. Comparisons between the hy-

droxyl (OH) and HI 21 cm lines in the z = 0.765 lens to-

wards PMN J0134−0931 have yielded stringent constraints

on changes in both α and µ [11, 12]. And a compari-

son between the the redshifts of “conjugate satellite” hy-

droxyl (OH) 18 cm lines from the z = 0.247 system towards

PKS1413+135 has yielded tentative evidence (at ≈ 2.6σ sig-

nificance) for changes in α and/or µ with cosmological time

[13].

Amongst the various astronomical methods to probe fun-

damental constant evolution, techniques based on compar-

isons between multiple spectral lines of a single species (e.g.

CH3OH, OH, etc) are the least prone to systematic effects. An

interesting situation arises in the case of the satellite OH 18 cm

lines, which are “conjugate” under certain astrophysical con-

ditions, i.e. have the same shape but opposite sign, with one

line in emission and the other in absorption, such that the sum

of the two optical depths exactly cancels out [14–16]. This

arises due to population inversion in the ground state of the

OH radical, due to quantum mechanical selection rules (when

the infrared OH rotational lines that connect the OH ground

state to the lower excited states are optically thick; [14]). Red-

shifted conjugate satellite OH lines provide an excellent probe

of fundamental constant evolution, as the two satellite OH line

frequencies have different dependences on α and µ [5, 16] and

the conjugate behaviour guarantees that the lines arise from

the same gas. If either α or µ were to change with cosmo-

logical time, the satellite line shapes should remain the same

but the two lines would be offset from each other in veloc-

ity space. Conversely, any local systematic effects that might

give rise to velocity offsets between the lines would also be

expected to change the line shapes. This implies that the sum

of the satellite optical depths would not cancel perfectly in

the presence of such systematic effects (i.e. the lines would

not remain “conjugate”). The cancellation of the sum of the

satellite OH 18 cm optical depths, along with a velocity off-

set between the two lines, is thus a signature of changes in α
and/or µ.

At present, the sole perfectly conjugate satellite OH 18 cm

system known at cosmological distances is the z = 0.247
absorber-emitter towards PKS 1413+135 [16]. Our earlier

deep Westerbork Synthesis Radio Telescope (WSRT) and

Arecibo Telescope observations of this system [13] yielded

tentative evidence, at 2.6σ significance, of a velocity offset

between the two OH lines, but with the same line shapes, the

signature expected from fundamental constant evolution. We
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report here further observations of this system, yielding one of

the deepest-ever Arecibo Telescope integrations, that allow us

to probe changes in G ≡ µα2 over a lookback time of 2.9 Gyr.

Spectra and results.— The Arecibo Telescope was used to

carry out a 125-hour integration on the satellite OH 18 cm

lines of PKS 1413+135 between April 2010 and June 2012.

The observations were carried out in double-position-

switched mode [17], with five-minute On and Off scans

on PKS 1413+135 followed by two-minute On and Off

scans on a nearby bandpass calibrator, PKS 1345+125. The

1720 MHz and 1612 MHz lines were observed simultaneously

on all runs, using the WAPP backends, with bandwidths of

1.5625 MHz sub-divided into 4096 channels and centred on

the redshifted satellite line frequencies. This yielded a veloc-

ity resolution of ≈ 0.18 km/s after Hanning smoothing and re-

sampling. System temperatures were measured using a noise

diode.

The initial data analysis was carried out in IDL, using stan-

dard procedures to produce calibrated spectra for the indi-

vidual double-position-switched scans. Each 5-minute source

spectrum was then visually inspected for the presence of any

systematic effects (e.g. radio frequency interference, complex

spectral baselines, etc); all spectra showing such effects were

excluded from the analysis. Each 5-minute spectrum was then

subjected to both the Kolmogorov-Smirnov and Anderson-

Darling tests, to test for gaussianity; spectra failing these tests

were also excluded. The above procedure was carried out for

the two satellite spectra independently; any 5-minute spec-

trum excluded for one line was also excluded for the other,

to ensure that the final spectra for the two lines are based on

simultaneous data and hence, that line variability is not an is-

sue. After all data editing (which excised . 10% of the data),

each 5-minute spectrum was shifted to the heliocentric frame.

The spectra were then converted to optical depth units, and

finally averaged together for each line. For the 1720 MHz

spectra, the weights for the averaging were determined from

the measured root-mean-square (RMS) noise values; the same

weights were used when averaging the 1612 MHz spectra, to

ensure simultaneity of the final satellite OH 18 cm spectra.

The top and bottom panels of Fig. 1[A] show our final

Arecibo Telescope satellite OH 18 cm optical depth spectra,

with optical depth plotted versus velocity, in the heliocentric

frame, in km s−1, relative to z = 0.24671. The spectra have

RMS optical depth noise values of 3.6 × 10−4 (1612 MHz)

and 3.1 × 10−4 (1720 MHz), per ≈ 0.18 km s−1 channel.

The Anderson-Darling test finds that the off-line regions of

both spectra are consistent with arising from Gaussian noise;

there is no evidence for systematic structure in either spectral

baseline. Fig. 1[B] shows the sum of the 1612 and 1720 MHz

optical depth profiles, again plotted against heliocentric veloc-

ity, in km s−1, relative to z = 0.24671. The RMS noise on the

summed spectrum is 5.1× 10−4 per 0.18 km/s channel, con-

sistent with the RMS noise values on the individual satellite

spectra. The summed spectrum shows no evidence for non-

Gaussian structure: both the Kolmogorov-Smirnov rank-1 test

and Anderson-Darling test find that the summed spectrum is

consistent with being drawn from a normal distribution. We

thus find that the satellite OH 18 cm lines remain conjugate at

the signal-to-noise ratio of our new Arecibo Telescope obser-

vations.

Most astronomical techniques probing fundamental con-

stant evolution are based on the modelling of the line profiles

as the sum of Gaussians or Voigt profiles. Multi-component

fits are used to estimate the redshifts of the individual spec-

tral components (e.g. [12, 18–20]). For complex profiles,

this process of fitting multiple spectral components can it-

self affect the results (e.g. due to under-fitting or over-fitting

the line profile). However, in the case of conjugate satellite

OH 18 cm lines, the maser mechanism that gives rise to the

conjugate behaviour guarantees that the lines have exactly the

same shape. This implies that a non-parametric technique,

based on cross-correlation of the two spectra, can be used to

measure the redshift difference between the lines, and, hence,

to probe changes in α and µ [13]. Specifically, the velocity

offset from zero of the peak of the cross-correlation of the

two OH lines directly yields the redshift difference between

the lines. The fact that the cross-correlation technique is non-

parametric and hence not susceptible to errors regarding the

decomposition of a line into multiple spectral components is

an important advantage of conjugate satellite OH lines over

other approaches (e.g. the many-multiplet method; [21, 22])

in probing fundamental constant evolution.

We used the velocity range −20 km s−1 to +2.6 km s−1

(indicated by the dashed vertical lines in Fig. 1[B]), enclosing

the strongest spectral line feature, for the cross-correlation;

this was done in order to maximize the signal-to-noise ra-

tio. The offset of the peak of the cross-correlation from zero

velocity was measured via a Gaussian fit. Very similar re-

sults were obtained on using other functional forms (e.g. a

parabolic form) for the cross-correlation as well as other non-

parametric methods (e.g. the sliding distance method [23]).

The RMS noise on the cross-correlation was obtained via a

Monte Carlo approach, in which we cross-correlated 104 pairs

of simulated satellite OH 18 cm spectra. The simulated spec-

tra were obtained by adding Gaussian random noise (char-

acterized by the RMS noise values on the observed spectra)

to the best 4-component Gaussian fits to the 1720 MHz and

1612 MHz spectra. Note that the Gaussian fits were only

used to obtain templates for the two spectra, and do not af-

fect the results in any way. We find that the cross-correlation

of the two satellite OH 18 cm lines peaks at a velocity off-

set of ∆Vnew = (+35.0 ± 56.5) m/s (all quoted errors are

at 1σ significance), with the 1720 MHz line at a lower ve-

locity (i.e. at a lower redshift). Our present Arecibo obser-

vations thus find no evidence of a statistically significant ve-

locity offset between the 1612 MHz and 1720 MHz spectra.

Using equation (13) of Chengalur and Kanekar [5] then yields

[∆X/X ] = (+0.97± 1.52)× 10−6, where X ≡ µα2.

Our earlier WSRT and Arecibo studies of the OH 18 cm

lines from PKS 1413+135, carried out between 2006 and

2008, yielded a net velocity offset of ∆Vold = (−230 ±

90) m/s between the two satellite lines [13], yielding
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FIG. 1: [A] (left panel) Arecibo Telescope satellite OH 18 cm spectra towards PKS 1413+135, with optical depth (1000 × τ ) plotted against

heliocentric velocity, in km/s, relative to z = 0.24671. [B] (right panel) The sum of the 1612 and 1720 MHz optical depth spectra; this is seen

to be consistent with noise. In both figures, the dashed vertical lines indicate the velocity range that was used for the cross-correlation analysis.

[∆X/X ] = (−6.3 ± 2.5) × 10−6. Combining the old and

the new results for [∆X/X ], with appropriate weights based

on the RMS noise values, our final result is [∆X/X ] =
(−1.0 ± 1.3) × 10−6. We thus find no statistically signifi-

cant evidence for changes in X ≡ µα2 over a lookback time

of 2.9 Gyr.

Systematic effects.— Systematic effects in the conjugate

satellite OH method that might contribute to increased errors,

over and above those determined from the cross-correlation

analysis, are discussed in detail in [13]. The systematics fall in

two broad categories, those arising from observational issues

[e.g. doppler tracking, frequency calibration, errors in the lab-

oratory frequencies, radio frequency interference (RFI), etc]

and astronomical issues (e.g. different intrinsic shapes of the

two satellite OH lines, interloping lines from other transitions,

etc). Errors arising from the above observational systematics

are small compared to our measurement errors. Specifically,

doppler corrections for Earth motion were carried out offline,

using a model of Earth motion accurate to < 15 m/s, a fac-

tor of four smaller than our measurement error. The Arecibo

Telescope frequency scale is set by the accuracy of masers

and local oscillators (1 Hz), more than two orders of mag-

nitude smaller than the measurement error. The satellite OH

line frequencies have been measured in the laboratory with an

accuracy of ≈ 15 Hz [24], more than an order of magnitude

smaller than our measurement error. Finally, detailed statis-

tical tests for non-Gaussian behaviour that might arise from

RFI were carried out on both the individual 5-m spectra and

the final averaged satellite OH spectra, and only spectra that

passed these stringent tests were retained in the analysis. The

fact that the satellite OH lines remain conjugate, with the sum

of the two optical depth spectra consistent with random noise,

indicates that RFI is not an important issue for these data.

Considering the second category, astronomical effects,

Kanekar et al. [13] note that there is no possibility of line in-

terlopers from other spectral transitions, either from the Milky

Way or galaxies at different redshifts along the line of sight to

PKS 1413+135, or from other molecular or atomic lines from

PKS 1413+135 itself. And, as in the case of RFI, the strongest

argument against the possibility of different intrinsic structure

in the two satellite OH line profiles (or line interlopers) is the

fact that the sum of the optical depth spectra is consistent with

Gaussian noise, exactly as predicted by the maser mechanism

for conjugate behaviour. This provides a stringent test for the

use of the conjugate satellite OH lines to probe fundamental

constant evolution: the satellite OH lines of PKS 1413+135

pass this test at our current sensitivity. Finally, an important

test of the use of any technique to probe temporal evolution

in the fundamental constants is that the same technique yield

a null result in the local Universe. For the conjugate satellite

OH technique, the expected null result was indeed obtained by

Kanekar et al. [13] for the nearby conjugate satellite OH sys-

tem in Cen.A (whose OH lines were observed with the Aus-

tralia Telescope Compact Array; [15]), at a sensitivity simi-

lar to that of the present Arecibo Telescope spectra. Overall,

we find no evidence that our result might be affected by sys-

tematic effects, related to either observational or astronomical

issues.
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Discussion— A wide variety of techniques, at optical and

radio wavelengths, have been used to probe the possibility of

temporal changes in α and µ, or combinations of these quan-

tities. In the optical regime, using echelle spectrographs on

10m-class optical telescopes, the many-multiplet method [21],

based on rest-frame ultraviolet spectral lines, has yielded the

highest sensitivity to changes in α out to relatively high red-

shifts, z ≈ 3 (e.g. [20, 22, 25–28]). The most sensitive results

have statistical errors of [∆α/α] ≈ (1 − 2) × 10−6, either

based on individual systems (e.g. [28, 29]) or large absorp-

tion samples (e.g. [22, 25]). Conversely, redshifted ultraviolet

ro-vibrational molecular hydrogen (H2) lines have yielded the

highest sensitivity to changes in µ, again out to z ≈ 3 (e.g.

[30–33]). The most sensitive of the results here have yielded

statistical errors of [∆µ/µ] ≈ 2× 10−6 (e.g. [34]).

Unfortunately, while the above optical results have low

statistical errors, it has recently become clear that most of

these studies are afflicted by systematic errors (e.g. [35–37]).

The problem here has to do with the wavelength calibration

of the optical echelle spectrographs, mostly the Keck Tele-

scope High Resolution Echelle Spectrograph (HiRES) and

the Very Large Telescope (VLT) UltraViolet Echelle Spectro-

graph (UVES), that were used for the optical observations.

As noted in [20, 37], all [∆α/α] (and [∆µ/µ]) results de-

rived from Keck-HIRES and VLT-UVES spectroscopy until

2014 are likely to be affected by systematic errors due to long-

range distortions in the wavelength calibration. These distor-

tions are still not understood and it is not possible in most

cases to retrospectively correct the earlier spectra [20]. Re-

cently, the many-multiplet method has been used with “super-

calibration” techniques or comparisons between very nearby

lines to reduce the effects of the above long-range distortions

(e.g. [20, 27, 38]). For example, a comparison between

ZnII and CrII lines in Keck-HIRES and VLT-UVES spectra

of nine absorbers yielded [∆α/α] = [+1.15± 1.67(stat.)±
0.87(sys.)] × 10−6 [20]. In another study, the long-range

distortions in multiple VLT-UVES spectra of a single bright

quasar (taken over a ten-year period) were corrected using

high-accuracy spectra from the HARPS spectrograph. The

many-multiplet method was then applied to these spectra, to

obtain a high sensitivity to changes in α, [∆α/α] = [−1.42±
0.55(stat.)± 0.65(syst.)]× 10−6 [28].

At radio wavelengths, the CH3OH and NH3 techniques

have yielded stringent constraints on changes in µ, with

[∆µ/µ] . 4 × 10−7 from individual absorbers at intermedi-

ate redshifts, z ≈ 0.685 (NH3; [8]) and z ≈ 0.886 (CH3OH;

[10]). The CH3OH technique is perhaps the most interesting

of these radio methods as it yields both high sensitivity and

a good control of systematic effects, as thermally-excited and

optically-thin spectral transitions of a single molecule are used

in the analysis, and one can test that the different lines have

the expected ratios in thermal equilibrium [10].

In the case of the conjugate satellite OH lines, the technique

is sensitive to changes in X ≡ µα2, and does not provide con-

straints on changes in the individual constants, without fur-

ther assumptions. Our result implies 2.0 [∆α/α] + [∆µ/µ] =

(−1.0 ± 1.3) × 10−6 over 0 < z < 0.247. This implies

1σ sensitivities of [∆α/α] = 0.65 × 10−6 (if we assume

[∆µ/µ] = 0) and [∆µ/µ] = 1.3 × 10−6 (if we assume

that [∆α/α] = 0). The crucial advantage of this method is

that it allows one to directly test whether it can be applied

at all, via the prediction that the two satellite OH lines must

have the same shapes, with opposite signs. Like the CH3OH

method discussed above, this technique allows one to measure

changes in the constants from a single space-time location,

without the need to average over multiple absorbers (as would

be required in most other techniques to overcome possible lo-

cal velocity offsets between the gas clouds giving rise to the

different lines). These two techniques are hence especially in-

teresting to probe the possibility of space-time variation in α
and µ.

Our results are based on one of the deepest-ever obser-

vations with the Arecibo Telescope, which has the largest

collecting area and sensitivity of today’s radio telescopes.

However, new radio telescopes [e.g. the Five-Hundred-Metre

Aperture Spherical Telescope (FAST) and the Square Kilo-

metre Array (SKA)] are now being built or planned that will

have even higher sensitivity than the Arecibo Telescope; these

will allow both higher sensitivity on known conjugate satellite

OH 18 cm systems like PKS 1413+135, and searches for new

conjugate satellite systems at high redshifts. Modern high-

frequency radio telescopes like the Very Large Array should

allow an improvement in sensitivity to fractional changes in

µ by more than an order of magnitude, using the NH3 and

CH3OH lines. Finally, the combination of high sensitivity

and new wavelength calibration schemes on next-generation

large optical telescopes (e.g. the Thirty Meter Telescope, the

Giant Magellan Telescope and the European Extremely Large

Telescope) should also allow improvements in the sensitivity

to fractional changes in α and µ by 1− 2 orders of magnitude

via the many-multiplet method and ro-vibrational H2 lines.

In summary, we have carried out an ultra-deep Arecibo

Telescope observation of the OH 18 cm satellite lines from

PKS 1413+135 at z ≈ 0.247. We find that the satellite OH

lines are conjugate within our measurement errors, with the

1720 MHz line in emission, the 1612 MHz line in absorption,

and the sum of the two optical depth spectra consistent with

Gaussian noise. We used a non-parametric technique, based

on cross-correlation, to test for a velocity offset between the

two OH lines, that might arise due to changes in α and/or µ.

The cross-correlation analysis finds that the velocity offset be-

tween the lines is ∆Vnew = (+35.0± 56.5)m s−1, consistent

with the null hypothesis of zero velocity offset between the

OH 1612 MHz and 1720 MHz lines. This implies [∆X/X ] =
(+0.97 ± 1.52) × 10−6, where X ≡ µα2. Combining

this with the results from our earlier Arecibo/WSRT analy-

sis yields our final result, [∆X/X ] = (−1.0 ± 1.3) × 10−6

over 0 < z < 0.247, consistent with no change in µα2 over a

lookback time of ≈ 2.9 Gyr.
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