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We develop the contact theory for spin-orbit-coupled Fermi gases.

By using a perturbation

method, we derive analytically the universal two-body behavior at short distance, which does not
depend on the short-range details of interatomic potentials. We find that two new scattering pa-
rameters need to be introduced because of spin-orbit coupling, besides the traditional s- and p-wave

scattering length (volume) and effective ranges.

This is a general and unique feature for spin-

orbit-coupled systems. Consequently, two new adiabatic energy relations with respect to the new
scattering parameters are obtained, in which a new contact is involved because of spin-orbit cou-
pling. In addition, we derive the asymptotic behavior of the large-momentum distribution, and find
that the subleading tail is corrected by the new contact. This work paves the way for exploring the
profound properties of spin-orbit-coupled many-body systems, according to two-body solutions.

Introduction.—Universality, referring to observations
independent of short-range details, is one of the most
fascinating and intriguing phenomena in modern physics.
In ultracold atoms, a set of universal relations, following
from the short-range behavior of the two-body physics
are discovered [1]. These relations are connected sim-
ply by a universal contact parameter, which overarches
between microscopic and macroscopic properties of a
strongly interacting many-body system. Nowadays, the
contact theory becomes significantly important in ultra-
cold atomic physics, and has systematically been verified
and investigated both experimentally and theoretically
[2-7]. Nevertheless, the contact theory for spin-orbit-
coupled systems is still unexplored till now, even though
the spin-orbit (SO) coupling was realized in cold atoms
several years ago [8-10], and resulted unique phenomena
have attracted a great deal of interest, such as topological
insulators and superconductors [11-14].

In this letter, for the first time, we generalize the
contact theory to strongly interacting spin-orbit-coupled
Fermi gases, and the single-particle Hamiltonian takes
the form,

Hi = 1k I e X (1)
TV Vi oM’
where k; = —iV and & are respectively the single-

particle momentum and spin operators, A > 0 is the
strength of SO coupling, M is the atomic mass, and
h is the Planck’s constant divided by 2w. Here, the
SO coupling is assumed to be isotropic for simplicity,
and the possible scheme for the realization of the three-
dimensional (3D) isotropic SO coupling is proposed in
[15]. Because of SO coupling, the orbital angular momen-
tum of the relative motion of two fermions is no longer
conserved, and then all the partial-wave scatterings are
coupled [16]. Fortunately, the total momentum K of two

fermions is still conserved as well as the total angular
momentum J. Therefore, we may reasonably focus on
the two-body problem in the subspace of K = 0 and
J = 0 for simplicity, and then only s- and p-wave scatter-
ings are coupled [16, 17]. Consequently, the two spin-half
fermions in the subspace of K = 0 and J = 0 is described
by the following two-body Hamiltonian
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where k is the momentum operator for the relative mo-
tion r = ry — r1, & is the spin operator of the ith atom,
and V (r) is the interatomic potential with a finite range
€. Our theory may also be generalized to the case of
K # 0 and J # 0, and then more partial waves should
be involved.

One of the most daunting challenges for establishing
the contact theory is how to obtain the universal two-
body behavior at short distance for a SO-coupled Fermi
gas. Although the SO-coupled two-body problem was
considered recently by using a spherical square-well po-
tential [16-18], the general form of such universal behav-
ior for any interatomic potential still remains elusive till
now. In this work, we develop a perturbation method
to construct the short-range asymptotic form of the two-
body wave function for a SO-coupled system. We find
that two new scattering parameters u,v need to be in-
troduced in the short-range behavior of two-body wave
functions, besides the traditional scattering length (vol-
ume) and effective ranges. The obtained universal be-
havior does not depend on the short-range details of the
interatomic potentials, and thus is feasible for any inter-
atomic potential with short range. Two new adiabatic
energy relations are accordingly found with respect to



the new scattering parameters, i.e.,
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in which we hold all the other two-body parameters un-
changed in the partial derivatives. Here, C,(IO) is the well
known s-wave contact, C((ll) is the p-wave contact corre-
sponding to the p-wave scattering volume [3, 6]. In addi-
tion, Py is the new contact introduced by SO coupling.
Further, we derive the asymptotic behavior of the large-
momentum distribution from the universal two-body be-
havior at short distance,
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in which Cél) is the p-wave contact corresponding to the
p-wave effective range. We find that the subleading tail
(g=*) of the large-momentum distribution is amended by
the new contact Py because of SO coupling.

Universal short-range behavior of two-body wave func-
tions.—Let us consider the two-body problem of a SO-
coupled system in the subspace of K = 0 and J =
0, and the corresponding Hamiltonian takes the form
of Eq.(2). The subspace is spanned by two orthog-
onal basis, i.e., Qo(f) = Yo (r)|S) and Oy (¥) =
Vit () M) + Yin (8) [44) — Yio () [T)] /v/3,  where
Yim () is the spherical harmonics, © denotes the an-

gular part of the coordinate r, and |S) = L\E”»

and {|TT> LT = %} are the spin-singlet and

spin-triplet states with total spin 0 and 1, respec-
tively. The two-body solution can formally be written
in the basis of {Qg (), Q1 (£)} as U (r) = g (r) Qo (L) +
¥1 (r) a1 (2) [16, 17].

Since the SO effect exists even inside the interatomic
potential, it should modify the short-range behavior of
the two-body wave function dramatically [19]. However,
in current experiments of ultracold atoms [20], the SO-
coupling strength X is of the order um™!, pretty small
compared to the inverse of the range of interatomic po-
tential e~! (of the order nm~1). Moreover, the momen-
tum k = /ME/h? is also much smaller than ¢! in
the low-energy scattering limit. Therefore, when two
fermions get as close as the range ¢, we may deal with
the SO coupling perturbatively as well as the energy, and
assume that the form of the two-body solution has the
following structure,

U (r) ~ ¢ (r) + k*f (r) = Ag (r) (6)

as r ~ €. Here, we keep up to the first-order terms of
k2 and . The advantage of this ansatz is that the func-
tions ¢ (r), f(r) and g(r) are all independent on the

energy and SO-coupling strength. Therefore, they are
determined only by the short-range details of the inter-
action, and characterize the intrinsic properties of the
interatomic potential. We expect that the traditional
scattering length or volume in the absence of SO cou-
pling are included in the zero-order term ¢ (r), while the
effective ranges are involved in f (r), the coefficient of
the first-order term of k2. Interestingly, new scattering
parameters should appear in the first-order term of A
(in g (r)), which are introduced by SO coupling. Conve-
niently, more scattering parameters may be introduced
if higher-order terms of k2 and A are perturbatively con-
sidered. Inserting the ansatz (6) into the Schrédinger
equation, and comparing the corresponding coefficients
of k2 and )\, we obtain
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where @ (r) = —iV - (62 —61). These equations can
analytically be solved for r > €, and simply yield
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where ap and a; are two complex superposition coeffi-
cients. Apparently, ag, by are the s-wave scattering length
and effective range, and a1,b; are the p-wave scattering
volume and effective range without SO coupling, respec-
tively. For simplicity, we may only consider the case with
by = 0 for broad s-wave resonances throughout the paper.
We can see that the s-wave component is hybridized in
the p-wave channel by SO coupling as manifested as the
term apA/a;. Interestingly, two new scattering parame-
ters v and v as we anticipate are involved. They are the
corrections from SO coupling to the short-range behav-
ior of the two-body wave function in s- and p-wave chan-
nels, respectively. If A = 0, the s- and p-wave scatterings
decouple, and the asymptotic form of ¥ (r) at small r,
i.e., Eq.(10), simply reduces to the ordinary s- and p-
wave short-range boundary conditions, respectively. The
derivation above doesn’t depend on the short-range de-
tails of the interaction, and thus is universal and appli-
cable for all kinds of neutral fermionic atoms.

In general, the s- and p-wave scatterings in different
spin channels should both be taken into account because
of SO coupling. We may roughly estimate which partial
wave is more important as follows. Without SO coupling,
and away from any resonances—in the weak interacting



limit, the two-body wave function should well behave as
r — 0 as U(r) ~ (ao/ao) Qo (F) + (a17/3a1) 2 (7). If
we assume that the atoms are initially prepared equally
in the spin channels Qg (f) and Q; (), we have ag/ay ~
agr/3a;. When interatomic interactions are turned on,
the two-body wave function becomes divergent as r —
0 (> ¢€), apr~tand ay7~2 for s- and p-wave scatterings, re-
spectively. This divergent behavior is unchanged even in
the presence of SO coupling. Then the ratio between the
strengths of s- and p-wave scatterings at small r becomes
(aor_l) / (alr_Q) ~ a0r2/3a1. Near s-wave resonances,
we have ag ~ k;l, a1 ~ €, r ~ €, where ks is the Fermi
wavenumber, and then this ratio is approximately of the
order (k fe)_l > 1. Therefore, the s-wave interaction
dominates the two-body scattering. By noticing Qg () =
1S) /v/Er, and Qy (£) = —i (62— 61) - (x/r)|S) /v/16r,
and if the p-wave interaction could be ignored near broad
s-wave resonances, Eq.(10) becomes (up to a prefactor

ao/VAT),
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(11)
which exactly recovers the result of [19] (see Eq.(31) of
[19]) with ap' = ag! — uA.

Near p-wave resonances, for example, the p-wave Fes-
hbach resonance at By = 185.09G in SLi [21], we have
ap ~ € a1 ~ k32, 7 ~ ¢, then the ratio between the
strengths of s- and p-wave scatterings is roughly of the
order (kfe)3 < 1. In this case, the p-wave scattering
becomes significantly important.

Large-momentum distribution.—For a many-body sys-
tem with IV spin-half fermions, if only two-body correla-
tions are taken into account, the many-body wave func-
tion Wy can approximately be written as the form of
Eq.(10), when fermions (i, j) get close while all the others
are far away. In this case, r = r; — r;, and the arbitrary
complex numbers ag and a3 become the functions of the
variable X, which involves both the center-of-mass (c.m.)
coordinate of the pair being considered and the coordi-
nates of all the other fermions. Further, oy and a; should
be constrained by the normalization of the many-body
wave function. Using the asymptotic form of the many-
body wave function ¥y at small r, we can easily obtain
the behavior of the tail of the single-particle momentum
distribution at large q (but smaller than ¢~!), which is
defined as n(q) = SN, [ [, dr; | [ dr;¥ye=iaT 2

After straightforward algebra, we easily obtain the mo-
mentum distribution n (¢) taking the form of Eq.(5) at
large ¢ (< e’l). Here, we are only interested in the de-
pendence of the momentum distribution on the ampli-
tude of q, and have already integrated over the angular
part of q. We find that

e = 3N [ aXloy (P, =0,1), (12
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are the conventional s- and p-wave contacts [6], where
T (X) denotes the operators of the c.m. motion of
the pair (i,7) and all the other fermions, and N =
N (N —1)/2 is the number of all the possible ways to
pair atoms. Besides, a new contacts Py resulted from
SO coupling appears, which is defined as

Py = 647T2N/ dXoj (X)ar (X) +cc..  (14)

Obviously, this new contact describes the interplay of the
s- and p-wave scatterings because of SO coupling.

Since the momentum distribution at large q is only
characterized by the short-range behavior of the two-
body physics, we may roughly estimate the order of all
the quantities in the large-q behavior of the momentum
distribution simply according to the two-body picture
as before. Near s-wave resonances, if initially without
SO coupling and away from any resonances, the atoms
are prepared equally in the spin states Qg () and Q (),
we have ag/an ~ agr/3ay, and then C{Vq=2/C{V ¢ ~
9a2¢%/a2r?, which is roughly of the order (kre)* < 1.
Besides, we may also find Cél)/C,(IO) ~ (kfe)4 < 1. This
means that the p-wave contribution to the tail of momen-
tum distribution at large q may reasonably be ignored,
which is consistent with the discussion before. However,
the SO-coupling correction is notable compared to the
p-wave contact in the subleading tail of the momentum
distribution, i.e., XPA/ClEl) ~ (kpe) 2> 1.

Near p-wave resonances, the leading tail ¢=2 of the
large-momentum distribution becomes important, be-
cause CVq72/CVq* ~ (k)™ > 1. In the sub-
leading tail of ¢~*, we find Cél)/C,(IO) ~ (kre) ™t > 1,
thus the s-wave contribution may be ignored. Conse-
quently, the momentum distribution at large q behaves

as CVq~2 + (Clgl) + )\PA) g~* with a considerable cor-
rection of AP, in the subleading tail due to SO coupling,
compared to the s-wave contribution, i.e. XPA/C,(IO) ~
(kre) ™ > 1.

Adiabatic energy relations.—The thermodynamics of
many-body systems, which is seemingly uncorrelated to
the momentum distribution, is also characterized by the
contacts defined above. A set of adiabatic energy rela-
tions describe how the energy of a many-body system
changes as the two-body interaction is adiabatically ad-
justed. Let us consider two many-body wave functions
Uy and ¥ corresponding to different interatomic inter-
action strengths. From the Schrédinger equations satis-



fied by ¥ and U’y we easily obtain
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where I = U*VU — (VI™*) U, F = ("o — Y5 1) ér
with the unit radial vector &, of r, and Uy (X,r) =
Yo (X, 7) Qo (£)+11 (X, 1) Q1 (). Here, the domain D, is
the set of all configurations (r;, r;) with r = |r; — r;| > ¢,
3 is the surface in which the distance between the two
atoms in the pair (4, j) is ¢, and 1 is the direction normal
to X but is opposite to the radial direction. Using the
asymptotic form of the many-body wave function ¥y at
small r, we find

oF =
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which characterizes how the energy of the system varies
as the scattering parameters adiabatically change. In the
absence of SO coupling, Eq.(16) simply reduces to the or-
dinary form of the adiabatic energy relations for s- and
p-wave interactions [6, 22|, with respect to the scattering
length (or volume) as well as effective range. Because of
SO coupling, two new scattering parameters come into
the problem, and then additional new adiabatic energy
relations appear, i.e., Eqs.(3)-(4). These adiabatic en-
ergy relations demonstrate how the macroscopic thermo-
dynamics of SO-coupled many-body systems varies with
microscopic two-body scattering parameters.

Contacts in a two-body problem.—On behalf of the
future experiments and calculations, we may explicitly
evaluate the contacts defined above for a two-body bound
state, the wave function of which may be written as a col-
umn vector in the basis of {Qg (£), Q1 (£)} as [17]

0 (s

+T

hgl) (kyr) |

(17)
where k1 = ik £ A\, and k = /—ME/h?. The bind-
ing energy E can be determined by expanding ¥y (r) at
small r and comparing with the short-range boundary
condition (10), then the two-body contacts are easily ob-
tained according to the adiabatic relations. Near s-wave
resonances, we find

h? 2h%u
E=——=+"")4+0(\ 18
Ma3+Ma0+ ()’ (18)
which simply reduces to the result E = —h?/Ma3 in the
absence of SO coupling. Then we immediately obtain

4

c? = 6472 /ag and Py = 1287%u by using adiabatic
relations. Near p-wave resonances, we find

2h? 6h%v
= - A+0 (N2 19
Ma1b1 Mbl + ( ), ( )
which is consistent with that without SO coupling
[3], and then it yields cH = —647%/b; and C;l) =

—256m2 (a7 ' — 3vA) /b3.

Grand canonical potential and pressure relation.—The
adiabatic relations as well as the large-momentum dis-
tribution we obtained above is valid for any pure energy
eigenstate. Therefore, they should still hold for any in-
coherent mixed state statistically at finite temperature.
Then the energy, particle number density and contacts
become their statistical average values. It should be in-
teresting to discuss how the results presented above affect
the finite-temperature thermodynamics. To this end, let
us look at the grand canonical potential, which is de-
fined as J = —PV [23], where P is the pressure and V is
the volume of the system. According to straightforward
dimensional analysis [24, 25], we can obtain

2 K2 P
—_Zp_— " [cO_ 2
J 3 9672 Mag (C‘l 2 )
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which alternatively yields the pressure relation by divid-
ing both sides of Eq.(20) by —V.

Conclusions.—We systematically study the contact
theory for spin-orbit-coupled Fermi gases. The univer-
sal two-body behavior at short distance is analytically
derived, by introducing a perturbation method, which
doesn’t depend on the short-range details of interatomic
potentials. For simplicity, we focus on the s- and p-wave
scatterings in the subspace of vanishing center-of-mass
momentum and total angular momentum. Interestingly,
two new microscopic scattering parameters appear in the
short-range behavior of two-body wave functions because
of spin-orbit coupling. We claim that this is a general
and unique feature for spin-orbit-coupled systems, and
thus the obtained universal short-range behavior of two-
body wave functions is feasible for all kinds of neutral
fermionic atoms. Consequently, a new contact is intro-
duced originated from spin-orbit coupling, which, com-
bining with conventional s- and p-wave contacts, char-
acterizes the universal properties of spin-orbit-coupled
many-body systems. In general, more partial-wave scat-
terings should be taken into account for nonzero center-
of-mass momentum and nonzero total angular momen-
tum. Then more contacts should appear. Our method
could conveniently be generalized to other kinds of spin-
orbit couplings as well as to low dimensions. Besides, our
method could also be applied to bosons. In the presence
of spin-orbit coupling, we expect that additional contacts
would be introduced for bosonic systems.
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