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How can dense biological tissue maintain sharp boundaries between coexisting cell populations?
We explore this question within a simple vertex model for cells, focusing on the role of topology and
tissue surface tension. We show that the ability of cells to independently regulate adhesivity and
tension, together with neighbor-based interaction rules, lets them support strikingly unusual inter-
faces. In particular, we show that mechanical- and fluctuation-based measurements of the effective
surface tension of a cellular aggregate yield different results, leading to mechanically soft interfaces

that are nevertheless extremely sharp.

The process of compartmentalizing different cell pop-
ulations, and maintaining those boundaries, is of vi-
tal importance in processes ranging from early embry-
onic development to tumor metastasis [I, 2]. A common
paradigm, the differential adhesion hypothesis, treats
each cell population as an immiscible fluid and suggests
that cell sorting and compartmentalization are driven by
an effective surface tension [3], which is in turn governed
by a competition between the repulsive and adhesive
interactions between cells. The precise cellular mecha-
nisms that govern effective surface tension are still un-
der debate; some investigations suggest it is dominated
by adhesive interactions [4], while others implicate acto-
myosin contractility [5] or a co-regulation of these two ef-
fects [II, 6, [7]. It is not even clear that different methods
for measuring the effective surface tension should yield
consistent results, which could explain discrepancies be-
tween observations and lead to nontrivial and unexpected
dynamics for cell sorting and compartmentalization.

One hint that something interesting may be happening
is a set of experiments demonstrating that many tissues
can support extremely sharp boundaries between com-
partments or coexisting cell populations [T, 8HI2]. Here
we present a possible explanation for these observations
based only on the assumption that cells interact mechan-
ically with touching neighbors, and that they might reg-
ulate these interactions differently with “unlike” cells.

For simplicity, our work focuses on models for single
layers of confluent cells, with no cellular gaps or overlaps.
2D vertex models represent confluent monolayers as a
polygonal tiling of space where each polygon corresponds
to a cell [I3HI5]; Voronoi models, which we study here,
specialize this idea by taking the cell shapes to be given
by a Voronoi tessellation of the cell positions. Vertex and
Voronoi models explicitly model mechanical interactions
between neighboring cells, and have successfully been
used to model many biophysical processes [12], T6HI§],
ranging from embryonic development to wound healing
to tumor metastasis [I9H23]. We include an additional in-
terfacial tension between different cell types to mimic the
mechanical changes that are known to occur at so-called
“heterotypic” contacts. This extra term naturally leads

to a mechanism for robust cell compartmentalization.

Surprisingly, we find that this model has a large dis-
crepancy in different macroscopic measurements of the
effective surface tension between coexisting cell popula-
tions. Specifically, we demonstrate that mechanical mea-
surements and measurements based on the spectrum of
interfacial fluctuations, which are equivalent in equilib-
rium particulate matter, are not equivalent in this sys-
tem. This difference allows tissues to support mechani-
cally soft interfaces that nevertheless are sharper than a
fraction of a cell diameter. This result is a direct conse-
quence of the topological nature of cellular interactions.

We begin by writing down a dimensionless form of the
vertex model, a commonly used energy functional de-
scribing cells in terms of their preferred geometry. Al-
though cells themselves are 3D objects, the 2D vertex
model projects these shapes onto the plane and maps the
combination of cell volumetric incompressibility and the
monolayer’s resistance to height fluctuations into a term
quadratic in the cross-sectional area of each cell [19].
N
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This energy depends on the area a; and perimeter p; of
each of the N cells, indexed by 7. The unit of length is
defined such that the average cell area (a;) = 1. The
parameter k4, which we set to unity, controls the cell
area stiffness relative to the perimeter stiffness. The pre-
ferred values for cell area and perimeter are ag and pg,
respectively. The second sum in Eq. [1] introduces an ex-
plicit additional interfacial tension between unlike cells
[24]. The sum is over all edges, [;;, between cells i and j;
the delta function is equal to unity if the “type” of cells
i and j are different, and zero if they are the same.

Biologically, ~;; could arise from spatial reorganization
of cadherins and cortical tensions, as well as the gener-
ation of acto-myosin cables at cell aggregate boundaries
[1]. For simplicity we assume that the value of the addi-
tional tension is the same, 7;; = 7o, for all such interfaces.
We set ag = 1 and choose py to focus on a parameter



regime where the bulk has diffusive, fluid-like dynamics
(po > 3.81) [25]. To isolate the effect of these heterotypic
interfaces, we further assume that “unlike” cells are oth-
erwise identical.

There is considerable debate about the dynamical rules
that best represent the motion of cells, which are fun-
damentally out of equilibrium. We emphasize that the
unusual interfacial properties we report below do not de-
pend on the precise details of the equations of motion
governing the system. To make this point, we carry out
simulations [26] 27] both in and out of equilibrium. We
present equilibrium data using overdamped Brownian dy-
namics at temperature 7. To model out-of-equilibrium
dynamics, we adopt those in self-propelled particle mod-
els [28], where each cell tries to move along a polarization
vector with self-propulsion speed vy. The polarization
vector rotates with a diffusion constant D, [24] [25] [29].
The data we present here is restricted to a modestly
out-of-equilibrium regime with 0.025 < vy < 0.1 and
0.1 < D, <10, and we will define T = v3 /2D, simply
to facilitate comparisons between the dynamical schemes
and display them on the same plots.

We first probe the effective surface tension of a cell
droplet by numerically implementing a parallel-plate
compression experiment, a popular technique in biologi-
cal systems [30, [3I]. This method measures surface ten-
sions using only the geometry of a deformed droplet and
the forces exerted, i.e., without needing to measure fluid
viscosities. A schematic diagram is shown in Fig. [IB. Al-
though often interpreted in terms of pressure differences
across the droplet interface via the Young-Laplace equa-
tion [3IH33], the force needed to maintain the plates at
fixed spacing can be understood by first assuming an en-
ergy given by an effective interfacial tension, ~, times the
perimeter of the droplet, and then taking the derivative
of that expression. We fit the droplet shape to an ellipse
with major and minor axes given by 2R; and H in Fig.
[IB, and take an analytic derivative of the perimeter of
the ellipse with respect to H.

A sample initial configuration, showing a droplet of
1250 “type A” cells immersed in fluid of 3400 “type B”
cells, is displayed in Fig. [JA. The plates, composed of
externally forced cells with plate-cell interactions identi-
cal to the cell-cell interactions, are moved together at a
constant velocity over a brief time window and then held
at a fixed distance apart. The transient behavior of the
force on the plates during the deformation contains rich
physical information, and it is well known that cell ag-
gregates and cellular foams have complicated rheological
behavior. Without a detailed viscoelastic model combin-
ing viscous effects and plastic cellular rearrangements one
can easily overestimate the value of the surface tension
when examining the decay of the transient towards its
long-time plateau [34, B5]. Thus, we focus on the long-
time limit of the external force needed to maintain the
droplet in its final ellipsoidal configuration. As seen in
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FIG. 1. The effective interfacial tension measured by
parallel plate compression matches the imposed mi-
croscopic tension. (A) Snapshot of a droplet of cells at the
beginning of a parallel plate compression simulation. (B) Ge-
ometric quantities used to compute the effective surface ten-
sion, as described in the main text or via the Young-Laplace
law. (C) Measured surface tension normalized by o as a
function of pg. Circles, squares, diamonds, and triangles cor-
respond, respectively, to 79 = 0.05, 0.1, 0.2, and 0.4, with
vo = 0.1 and D, = 10. This data is representative of our
results for all simulations performed. [inset] Example of the
mean force in the y-direction on lower plate, shown on a log-
arithmic scale, as a function of time.

Fig. [[IC, we find an effective surface tension consistent
with the value imposed microscopically in the model.

We next probe the effective surface tension by mea-
suring the spectrum of fluctuations at an interface. One
common method of extracting the surface tension of a
fluid phase boundary is to look at the structure and dy-
namics of capillary waves [36], [37]. In equilibrium simula-
tions this is straightforward, as one can directly connect
the interfacial roughness to the effective surface tension
using standard techniques [36] [38].

Assuming that the Fourier spectrum of the interface
has independent, Gaussian, equipartitioned modes, each
height mode h, has magnitude (|hy|?) = 'vfinqZ’ where L,
is the linear system size. The size of the periodic box sets
the range of accessible wavevectors ¢ = 2mn/L, for n =
1 to co. The mean interfacial width is w? = Zq<|hq|2>,
which gives

KTL,
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where w3 captures the contribution of the ¢ = 0 mode.
We simulate square domains where L, changes by an
order of magnitude, and estimate w for particular con-
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FIG. 2. Interfaces are much sharper than expected
based on the imposed microscopic tension. Normalized
growth of the interfacial width, w, as a function of the size
of the periodic simulation domain, L,. Filled green squares
refer to an equilibrium system at the same Tcyy as the or-
ange diamonds, which are the self-propelled cell model with
vo = 0.1, D, = 1. Blue circles refer to an active system with
vo = 0.1, D, = 0.1. Open green squares refer to 2D vertex
model simulations with the same parameters as the Voronoi
simulations represented by filled green squares.The dashed red
line is the expected scaling based on the standard capillary
wave argument using v = o = 0.01 as the interfacial tension
and wo = 0. [inset] Sample image of two cell types in a strip
geometry.

figurations by fitting the density profile of the strip to a
hyperbolic tangent [36] B8]. We then extract the effective
surface tension by evaluating the growth of the interfacial
width using Eq.

In the cellular models this expected behavior breaks
down entirely, both in the scaling with system size and
the scaling with wavevector. The majority of our data
uses the Voronoi model described above, but the open
squares in Fig. [2| are simulations of a 2D vertex model;
see the Supplemental Material for details [39]. The in-
set to Fig. |2[ shows a sample strip geometry, where vi-
sual inspection suggests that the segregation between the
cell types is very sharp. This impression is confirmed by
Fig. [2, where we plot the extracted interfacial width as
a function of system size normalized by the imposed mi-
croscopic tension. For comparison, we also plot a lower
bound (with wy = 0) on the w? value expected for an
equilibrium system based on our mechanical measure-
ment. Focusing first on the equilibrium system given by
the green squares, we see the width is more than an order
of magnitude smaller than expected.

Naively fitting the data would lead to an implied value
of v nearly two orders of magnitude larger than 7y, but we
emphasize that our simulation data do not cleanly fit to
the form of Eq. 2} Simulations with non-equilibrium dy-
namics are labeled with diamonds and circles. Although
these systems are still an order of magnitude sharper
than expected, the non-equilibrium dynamics do broaden

the interface. This is consistent with observations in self-
propelled particle systems [38, [43], and is an interesting
avenue for future research.

This reduction in the scale of interfacial fluctuations
can be understood as a direct consequence of the topolog-
ical nature of the interaction rules in these cell models. In
particular, even though the energy is a continuous func-
tion as cell rearrange, there are discontinuous changes in
the force whenever cells exchange neighbors. At an inter-
face these discontinuous forces suppress fluctuations, pin-
ning cells to the boundary and sharply compartmentaliz-
ing the cells. These forces can be analytically calculated
for simplified geometries, as we show in the Supplemental
Material for a square lattice of cells [39].

In contrast to homogeneous vertex models, where in
the fluid phase four-fold vertices are generically unstable
[44], we predict that in the presence of inhomogeneous
line tensions (such as those we consider in this work)
some geometric configurations around four-fold vertices
are stable. Although not commented upon, four-fold ver-
tices can been seen in, e.g., the vertex-model-simulation
images of Ref. [9]. This argument becomes slightly more
complicated in the Voronoi model, as at higher values
of pg the Voronoi constraints can stabilize four-fold ver-
tices even in the bulk [29] 45]. Nevertheless, we expect to
see an enhancement of four-fold stabilized vertices at the
interface in Voronoi models as well.

At finite effective temperatures these four-fold vertices
will transiently resolve into three-fold vertices separated
by a short edge. Therefore, we test our predictions by
comparing the distribution of edge lengths I; in the bulk
and along the interface between two cell types. Figure 3]
shows the bulk distribution (black dashed line) and the
interfacial distribution for a wide range of imposed ten-
sions (solid lines). For any value of applied tension we
see a clear enhancement of very short interfacial edges
with respect to the bulk distribution, indicating that the
Voronoi tessellation is approximating an excess popula-
tion of four-fold vertices. As shown in the inset to Fig.
for very short edges we see that the interfacial edge length
distribution is approximately exponential, with a decay
length [, consistent with simple energetic considerations
based on vy and Tey.

We next show that the near-four-fold vertices in the
disordered geometries in our simulations give rise to dis-
continuous restoring forces that suppress fluctuations of
the interface. We quantify this by systematically displac-
ing each cell at the interface and measuring the restoring
force, as described in more detail in the Supplemental
Material [39]. This measures the forces in the underlying
energy landscape, which we show in the inset to Fig. [d
At a particulate interface governed by adhesive interac-
tions one would expect a spring-like restoring force pro-
portional to the magnitude of the displacement. Instead,
we find that the mean force is nearly independent of the
displacement over orders of magnitude, and that it is pro-
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FIG. 3. Short interfacial edges become more probable
with increasing tension. Probability distribution of inter-
facial edge lengths, P(l;), for po = 3.95, vo = 0.1, D, =1 and
~vo = 0.005 — 0.64 (light red to dark blue curves). The distri-
bution of cell edge lengths in the bulk is given by the dashed
black curve. The I; < 1 distributions are approximately expo-
nential, with characteristic decay length [,. [inset] The length,
lp, characterizing the short edge distribution for D, = 1 and
vo = 0.1, 0.05, 0.025. The dashed red line is a guide to the
eye with slope -1, corresponding to a Boltzmann expectation

P(l;) ~exp (=li/(Teyslp)

portional to the applied ~q, precisely as predicted by our
analysis of the simplified geometry calculated in the sup-
plemental material. The main panel of Fig. [4 shows the
full distribution of restoring forces for e, = 107%, com-
pared to our analytic prediction (dashed lines), indicating
that our simple model captures the origin of anomalous
behavior in the simulations.

How is it possible that a mechanical measurement gives
a different answer than the fluctuation-based one? Our
works suggests that the nature of the mechanical mea-
surement is important: the parallel plate experiment ac-
cesses much larger forces because it is strain-controlled,
and so it can overcome cusp-like pinning forces. The sig-
nature of this is likely contained in the transient behavior
of the forces shown in the inset of Fig. [[B. A small-scale
microrheology experiment, for example, might yield a re-
sult more similar to the fluctuation-based measurement.

We have demonstrated that adding a simple interfacial
tension term in a model of topologically interacting cells
can lead to highly non-trivial material behavior. We find
a strong discrepancy between the effective surface ten-
sion defined by mechanical measurements versus those
based on fluctuations, even in equilibrium. The roughness
of interfaces is almost completely suppressed, leading to
strikingly sharp boundaries between fluid domains.

The extreme interfacial sharpening is due to the topo-
logical nature of the intercellular interactions. Since cells
interact with their neighbors, and not according to the
distance between cells, a cusp-like energy landscape un-
derlies the dynamics. We have confirmed that this be-
havior is robust to changes to single cell mechanics (e.g.,
Po), changes to the propulsion mechanism (e.g., thermal
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FIG. 4. The restoring force changes discontinuously
when interfacial cells are displaced. The distribution of
restoring forces, P(f.), on cells displaced by e, = 10™* in
the inherent state of a system prepared in a strip geome-
try with po = 3.95, D, = 1, vo = 0.1. From left to right
Yo = 0.04, 0.08, 0.16, 0.32, 0.64. The dashed vertical lines
show the magnitude of the restoring force predicted from the
analytical calculation in the Supplemental Material based on
breaking four-fold vertices in a square-lattice geometry for
each value of 7. [inset] For each value of v¢ the mean of the
restoring force is nearly independent of the displacement for
small displacements, demonstrating the non-Hookean behav-
ior of the interface. The dashed line is the Hookean fit to the
Yo = 0.04 data at large displacements.

vs. self-propelled), and changes in the underlying degrees
of freedom of the model. Note that in the Voronoi model
topology of the interaction network is set by the geom-
etry, but in models with more degrees of freedom (such
as vertex models or cellular Potts models) this is not the
case. We believe that exploring the connection between
the rules for how cells exchange neighbors and the nature
of interfaces is an important avenue of future research.
This interfacial sharpening mechanism has obvious im-
plications for cell compartmentalization, but it also may
influence the dynamics of cell sorting. It is commonly
assumed that both compartmentalizing and sorting pro-
ceed as if cells were immiscible fluids; we have seen that
many-fold vertices fundamentally alter compartmental-
ization, and we speculate that they may likewise have
profound consequences for the process by which cells sort.

Recent work has suggested that surprising conse-
quences can arise from systems interacting via topolog-
ical interactions rather than purely metric-based ones
[46-49]. While much of the work in this direction has
focused on explicitly non-equilibrium systems — animal
flocking or self-propelled particles interacting with com-
bined Viscek and Voronoi dynamics — here we have shown
that surprising interfacial behavior may arise as a generic
consequence of the cusp-like landscape generated by the
topological rules. We speculate that, in the context of real
cellular aggregates, epithelial cells may interact topolog-
ically whereas mesenchymal or non-confluent cells may



interact metrically (through the surrounding medium or
otherwise). In addition to its relevance for confluent cellu-
lar aggregates, our findings may point towards a interest-
ing new class of bio-inspired materials, where combining
mesoscopic interaction units with independent regulation
of tension and adhesion may support a diverse set of un-
usual material properties.
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