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We use molecular simulations to probe local viscoelasticity of an entangled polymer melt by
tracking the motion of embedded non-sticky nanoparticles (NPs). As in conventional microrheology,
the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function
GGSE(t) from the mean square displacement of NPs. GGSE(t) for different NP diameters d are
compared with the stress relaxation function G(t) of a pure polymer melt. The deviation of GGSE(t)
from G(t) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For
linear polymers, a plateau in GGSE(t) emerges as d exceeds the entanglement mesh size a and
approaches the entanglement plateau in G(t) for a pure melt with increasing d. For ring polymers,
as d increases towards the spanning size R of ring polymers, GGSE(t) approaches G(t) of ring melt
with no entanglement plateau.

Microrheology is a powerful technique to measure the
viscoelasticity of a medium through tracking the mo-
tion of embedded probe particles[1]. The particles are
often much larger than any structural length scale of
the medium, and their motion is coupled to the bulk
viscoelasticity [2–4]. In this Letter, we use molecular
simulations to explore the extension of microrheology
to nanorheology, in which nanoparticles (NPs) smaller
than or comparable to the structural length scales of the
medium are used instead of micron-size beads. Specifi-
cally, we study NPs in a melt of entangled polymers. A
key question is how viscoelastic modes of the melt affect
the NP motion and how it is related to the diameter d
of NPs and the structural length scales of the polymer
melt, such as the average spacing a between polymer en-
tanglements and the average size R of polymers.

Diffusion of NPs in a polymer melt is an essential pro-
cess during the fabrication of polymer nanocomposites, a
prominent class of hybrid materials [5, 6]. Experiments
[7–10] and simulations [6, 11–13] have demonstrated that
NP diffusion in a melt of entangled linear polymers de-
pends on the relation between d and a. The mobility
of NPs with d < a is higher than the prediction of the
Stokes-Einstein relation [12, 13]. Scaling theory [14] ar-
gues that these NPs are coupled only to the unentangled
dynamics of local chain segments with sizes up to ≈ d.
The mobility of NPs with d > a is suppressed due to the
confinement of the entanglement network [12, 13]. While
sufficiently large NPs are trapped by the network and
cannot freely diffuse until the terminal relaxation of the
network, NPs with d moderately larger than a can over-
come the entanglement confinement through the hopping
diffusion mechanism [15].

Recently, NP diffusion in an entangled melt of non-
concatenated ring polymers has also been studied using
simulations and scaling theory [13]. The motion of NPs
with d > a in ring polymers is not as strongly suppressed
as in linear polymers of the same lengths, as there is
no entanglement network in a ring polymer melt. The

comparison of NP diffusion in entangled linear chains and
non-concatenated rings exemplifies the effects of polymer
architecture on the dynamical coupling between NPs and
polymer melts.

One measure of viscoelasticity is the stress relaxation
modulus G(t) as a function of time t. In microrheol-
ogy, G(t) is linked to the mean squared displacement
(MSD) of tracer particles

〈
∆r2(t)

〉
through the general-

ized Stokes-Einstein (GSE) relation [1, 2]. In the domain
of Laplace frequency s, the GSE relation is

G̃(s) =
6kBT

fπds
〈

∆̃r2(s)
〉 (1)

in which G̃(s) and ∆̃r2(s) are the unilateral Laplace
transforms of G(t) and

〈
∆r2(t)

〉
. f = 3 or 2 depend-

ing on whether the particle-medium boundaries are stick
or slip.

We employ the GSE relation to convert the simula-
tion data of NP MSD in a polymer melt to an effec-
tive stress relaxation function GGSE(t). The results of
GGSE(t) for NPs with different diameters d are compared
with the stress relaxation function of the corresponding
pure polymer melt GGK(t), which is obtained using the
Green-Kubo formula. This comparison is performed for
NPs in entangled linear polymers and non-concatenated
ring polymers. Through this comparison, we examine
the coupling between NP motion and the bulk melt vis-
coelasticity and the dependence of the coupling on d.

The models of polymers and NPs are similar to
those in previous molecular dynamics (MD) simulations
[6, 12, 13, 16–19]. Lennard-Jones units σ, m and ε are
used for length, mass and energy, respectively. For the
entangled linear polymer melt, the number of monomers
per entanglement strand Ne ≈ 28 [20, 21], the average
spacing between entanglements a ≈ 5σ [21], and the
entanglement time τe ≈ 4000τ [22] with τ = σ

√
m/ε.

The number of monomers in a polymer is N = 800 for
both linear chains and rings. NP diameter d ranges from



2

FIG. 1. GGSE(t) (open squares) for d = 5σ in linear polymers
with N = 800. The corresponding

〈
∆r2(t)

〉
is shown in the

inset (see black line). The log-log slope α = 2 for the ballistic
regime and α = 1 for the Fickian regime are indicated. The
estimated end of the crossover between ballistic and thermal
motion is indicated by the black square.

3σ < a to 15σ ≈ 3a, and the volume fraction of NPs
φNP ≈ 10%. Previous simulations [6] have shown that
the viscosity of a NP linear polymer composite is reduced
with respected to that of the corresponding pure polymer
melt if d < a, almost unchanged if d ≈ a, while enhanced
if d > a. The relative change of composite viscosity with
respect to pure melt viscosity can be up to ≈ 25% at
φNP ≈ 10%. For NP-ring systems, our simulation re-
sults show that the composite viscosity at φNP ≈ 10%
also changes by up to ≈ 25% depending on d. All sam-
ples were equilibrated at pressure P = 0 and temperature
T = 1.0ε/kB . Subsequent simulations were run at con-
stant volume V for up to 108τ . MSDs

〈
∆r2(t)

〉
of NPs

in the simulations have been reported in a previous pa-
per [13]. Additional simulation details are presented in
Supplemental Material (SM).

The stress relaxation modulus for a pure polymer melt
is calculated using the Green-Kubo formula

Gij
GK(t) =

V

kBT

〈
σij(t)σij(0)

〉
(2)

where σij(t) is the pre-averaged stress [23], and i and j
are Cartesian indices with i 6= j. GGK(t) is computed as
the average of Gij

GK(t) with ij = xy, xz and yz.
We use the GSE relation (Eq. 1) to convert

〈
∆r2(t)

〉
to GGSE(t). The conversion is done using the method
developed by Mason [24]. One example of the conver-
sion is given in Fig. 1. The early-time part of

〈
∆r2(t)

〉
is excluded from the conversion, as the inertialess GSE
relation (Eq. 1) is not applicable to the regime of bal-
listic motion and the subsequent crossover to thermal
motion [25]. As shown in the inset of Fig. 1, a typical

MSD curve starts with a ballistic regime where the log-
log slope α = d log

〈
∆r2(t)

〉
/d log t = 2, then it crosses

over to a sub-diffusive regime with α < 1, and eventu-
ally enters the Fickian regime with α = 1. We estimate
that the crossover from ballistic to thermal motion ends
at the inflection point of α vs. log t. The black square
in the inset of Fig. 1 indicates the end of the crossover
at τ∗ ≈ 30τ for d = 5σ. A detailed discussion of this
criterion for τ∗ can be found in SM. Only

〈
∆r2(t)

〉
for

t > τ∗ is used in the conversion to GGSE(t).
Throughout the paper, we use f = 2 for the GSE

relation, which corresponds to slip NP-polymer bound-
aries. The slip boundary results from the slip length
Ls(t) being larger than d for t > τ∗. Previous simula-
tions [26] have demonstrated that Ls for a bulk polymer
melt scales linearly with the melt viscosity η. To estimate
Ls(t) in the present simulations, a similar scaling relation
Ls(t) ≈ b [η (t) /η0], in which monomer size b ≈ σ and
monomeric viscosity η0 ≈ τkBT/σ

3, is used. In SM, we

estimate η(t) from
∫ t

0
GGK(t

′
)dt

′
and demonstrate that

the condition Ls(t) > Ls(τ
∗) > d for t > τ∗ is satis-

fied in all simulated NP-polymer systems (see Fig. S1),
justifying the slip NP-polymer boundaries.

Results of GGK(t) and GGSE(t) for linear polymers
are shown in Fig. 2(a). For GGK(t), there is first
a power-law decay, then the development of entangle-
ment plateau, and finally the regime of terminal relax-
ation. At t ≈ 6.5 × 104τ with the smallest log-log slope
|−d logG(t)/d log t| ≈ 0.07, G(t) ≈ 2.6×10−2ε/σ3, which
is close to the theoretical prediction [27] of the entangle-
ment plateau Ge ≈ 4ρkBT/5Ne ≈ 2.5 × 10−2ε/σ3 with
melt density ρ = 0.89σ−3 and Ne ≈ 28. The power-law
decrease can be described using the Rouse modes of short
unentangled sections of polymer, and is predicted to scale
as G(t) ∼ t−1/2 [28]. The entanglement plateau has been
successfully understood based on the phenomenological
tube model [27, 28], in which entangled chains are con-
fined in their respective tubes with average diameter ≈ a.
For Z = N/Ne ≈ 30 as in the present simulations, dy-
namic processes such as Rouse-type relaxation along the
tube, tube length fluctuation and constraint release con-
tribute to the partial stress relaxation prior to the ter-
minal relaxation [29], and results in the deviation of the
plateau from a horizontal line. To compare the simu-
lation data of GGK(t) with theories for polymer stress
relaxation, we fit GGK(t) to the theoretical expression
proposed by Likhtman and McLeish [29]. The details
of the fitting are presented in SM. The parameters of
the best fit are N/Ne = Z = 33 ± 1, Ne = 24 ± 1,
τe = (1.9± 0.1)× 103τ , and Ge = (0.030± 0.002) ε/σ3.

The melt viscoelasticity that affects the thermal NP
motion in linear chains depends on d, as demonstrated
in the d-dependence of GGSE(t) in Fig. 2(a). For d =
3σ < a and d = 5σ ≈ a, there is no plateau in GGSE(t).
The dynamic modes of local chain segments that control
the motion of NPs with d ≤ a contribute to GGSE(t).
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FIG. 2. (a) GGSE(t) for NPs with different d in linear poly-
mers with N = 800 compared to GGK(t) for the pure linear
polymer melt. Inset shows τt vs. d for GGSE(t) (blue squares)
and τt for GGK(t) (red line) with error bars. The dashed blue
line indicates the best fit to the scaling theory prediction [15].
(b) The ratio GGSE(t)/GGK(t) for the same systems as in
(a).

The degree of coupling between NP motion and these dy-
namic modes is quantified by the ratio GGSE(t)/GGK(t)
(see Fig. 2(b)). As t increases, GGSE(t)/GGK(t) drops
below 1, indicating reduced degree of coupling between
NP motion and the corresponding dynamic modes. The
decrease of GGSE(t)/GGK(t) is less rapid for d = 5σ
than for d = 3σ, indicating stronger coupling between
NP motion and the melt viscoelasticity with increasing
d. Scaling theory [14] predicts that the motion of a NP
with d < a is coupled to the Rouse modes of chain seg-
ments with sizes up to d. Motivated by the theory, we
compare GGSE(t) for d ≤ a with

G(t) =
ρkBT

N

N∑
p=pc

exp

(
−2tp2

τR

)
(3)

which is the sum of the modes with Rouse time τR and
mode indices pc ≤ p ≤ N . N = 800 and N/pc is the
number of monomers in the largest chain segment that
affects NP motion. The comparison is presented in SM.

As d exceeds a, a plateau regime emerges as indicated
by the inflection in the log-log plot of GGSE(t). The
presence of a plateau means that NPs with d > a are
affected by the confinement of the entanglement network.
The confinement is stronger for larger d, and the coupling
between NP motion and melt viscoelasticity is enhanced
with increasing d, as shown in Fig. 2(b). However, for the
largest d = 15σ, the coupling is still not complete with
GGSE(t)/GGK(t) < 1. We fit GGSE(t) for d > a to the
Likhtman-McLeish expression [29] (eq. S1). As shown in
SM, the best-fit value of the number of entanglements
per chain Z increases with d, but stays below Z = 33
for the bulk melt. The reason of the partial coupling
for 8σ ≤ d ≤ 15σ has been attributed to the hopping
diffusion [13, 15] for d moderately larger than a.

The terminal regime of G(t) in Fig. 2(a) is fit to an
exponential decay with G(t) ∼ exp (−t/τt), where τt is
the characteristic decay time. While τt characterizes ter-
minal stress relaxation in the pure melt, τt for GGSE(t)
is essentially the terminal diffusion time of NP motion.
The results of τt for GGSE(t) and GGK(t) are shown in
the inset of Fig. 2(a). τt for GGSE(t) increases with d
and then saturates around τt for GGK(t) as d exceeds
10σ. Despite the saturation of τt, GGSE(t) is still be-
low GGK(t) for d ≥ 10σ. This suggests that NPs with
d ≥ 10σ are coupled to the melt dynamics up to the
longest terminal relaxation mode, though the coupling is
not complete. Scaling theory [15] predicts that τt ∼ d4

for d < a, τt ∼ exp (d/a) for hopping diffusion, and fi-
nally τt saturates at the terminal relaxation time of the
melt in the large d limit. The best fit of the d-dependence
of τt to an analytical function motivated by the theory is
shown by the dashed line in the inset of Fig. 2a. Details
about the fitting and the terminal regimes are in SM.

Results of GGK(t) and GGSE(t) for ring polymers
are shown in Fig. 3. Unlike GGK(t) for linear poly-
mers, GGK(t) for ring polymers has no entanglement
plateau, as there is no long-lived entanglement network
[30]. The melt viscoelasticity that determines the diffu-
sion of NPs in rings depends on d, as demonstrated by
the d-dependence of GGSE(t) in Fig. 3. As d increases,
GGSE(t) for NPs in rings approaches GGK(t) for pure
rings, and the ratio GGSE(t)/GGK(t) deviates from 1 less
rapidly with increasing t (see the inset of Fig. 3). These
results show that NP motion is coupled to the melt vis-
coelasticity over a wider spectrum of relaxation modes
with increasing d, and the coupling is stronger for larger
d. Scaling theory [13] predicts that NP motion is coupled
to the dynamics of ring sections with sizes up to d, which
is smaller than the size of an entire ring polymer.

The motion of NPs with sufficiently large d is expected
to be completely coupled to the terminal relaxation of the
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FIG. 3. GGSE(t) for NPs with different d in ring polymers
with N = 800 compared to GGK(t) for the pure linear poly-
mer melt. Inset shows the ratio GGSE(t)/GGK(t).

polymer melt, and the corresponding GGSE(t) excluding
the early-time part affected by NP inertia is expected to
agree with GGK(t). Previously, based on the examina-
tion of the d-dependence of the diffusion coefficient D for
the same simulations [13], it is estimated that the Stokes-
Einstein (SE) relation D = kBT/2πηd, where η is the
melt viscosity, is recovered for d > dc ≈ 20σ in NP-linear
systems (N = 800), and for d > dc ≈ 30σ in NP-ring
systems (N = 800). Since the recovery of SE relation
corresponds to a complete coupling between Fickian NP
motion and the melt viscoelasticity, we expect that the
threshold NP size dc for the agreement between GGSE(t)
and GGK(t) is also 20σ and 30σ for NP-linear and NP-
ring systems (N = 800), respectively.

The important length scale that determines the agree-
ment between GGSE(t) and GGK(t) differs for NPs in
linear and ring polymers. d is compared with the entan-
glement spacing a to determine whether GGSE(t) and
GGK(t) agrees for NPs in linear chains. According to
the hopping diffusion model [15], the hopping probabil-
ity decreases as ∼ exp (−d/a). Hopping diffusion is sup-
pressed for d sufficiently larger than a, and therefore the
NP motion is completely coupled to the relaxation of the
entanglement network even for d smaller than the size of
linear chains. In the present simulation, the estimated
dc ≈ 4a for the complete coupling between NPs and lin-
ear polymers. By contrast, d is compared with the aver-

age spanning size
〈
R2
〉1/2

of ring polymers to determine
the agreement between GGSE(t) and GGK(t). As there
is no long-lived entanglement network to confine NPs in
ring polymers, NP motion is increasingly coupled to ring
dynamics at longer time scales and larger length scales

as d increases towards
〈
R2
〉1/2

. In the present simula-

tions,
〈
R2
〉1/2 ≈ 15σ, and the estimated dc ≈ 2

〈
R2
〉1/2

for the coupling between NPs and the entire relaxation

dynamics of rings. dc ≈ 2
〈
R2
〉1/2

results from the broad

distribution of R around the average
〈
R2
〉1/2

. Our analy-

sis in SM shows that 33% of all R are larger than
〈
R2
〉1/2

,

while almost all (99%) R are smaller than d = 2
〈
R2
〉1/2

.
This explains why NPs with d = 15σ are not completely
coupled to the entire ring dynamics, whereas NPs with

d > 2
〈
R2
〉1/2

are anticipated to be almost completely
coupled.

Another important length scale for NP-polymer cou-
pling is the slip length Ls at NP-polymer boundaries.
Present simulations correspond to slip boundary condi-
tion with Ls > d. If d > Ls, the boundary condition
becomes stick. There would be a scaling regime where
NP motion is fully coupled to all relaxation modes of
polymers but with stick NP-polymer boundaries. Fig.
S9 shows the scaling theory prediction for such a regime
depending on d and polymer size. The existence of two
length scales dc and Ls suggests a two-stage coupling of
NPs to entire polymer dynamics with increasing d. NPs
are first coupled to all relaxation modes with slip NP-
polymer boundaries as d exceeds dc. Subsequently, the
boundary conditions change from slip to stick as d further
increases above Ls.

To summarize, on the basis of molecular simulations,
we compare the stress relaxation moduli GGSE(t) con-
verted from NP MSD through the generalized Stokes-
Einstein relation and GGK(t) for pure entangled polymer
melts calculated using the Green-Kubo formula. The de-
viation of GGSE(t) from GGK(t) results from the incom-
plete coupling of NP motion to the relaxation modes of
polymer melt. The threshold NP size dc for the agree-
ment between GGSE(t) and GGK(t) is compared to the
entanglement mesh size for NP-linear systems whereas to
the polymer size for NP-ring systems in which there are
no entanglement networks. Our simulations correspond
to slip NP-polymer boundaries, but a change from slip
to stick boundaries as d increases above the slip length
Ls is anticipated. NP-polymer coupling with increas-
ing d is proposed to be a two-stage process depending
on dc and Ls. Our study should help extend the well-
established micro-rheology procedures to nanorheology,
which would advance the study of local viscoelasticity
that controls the dynamics of nano-scale objects in a vis-
coelastic medium, such as NPs in polymer nanocompos-
ites and NP-based drug carriers in living cells.
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