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Abstract

By adsorbing the same species onto both sides of a suspended, atomically thin membrane, it

is possible to couple two distinct surface adsorption systems. This new system, with reflection

symmetry about the membrane, is described by a phase diagram with two axes, both representing

the chemical potential of the same element, but in distinct half-spaces. For the case of potassium

adsorption onto a graphene membrane, the result is a devil’s staircase of fractions for the proportion

of adsorbates adhered to one side. Fractions with simpler denominators are favored across wider

regions of chemical potential, a pattern reminiscent of other fractional systems across a wide

range of physics. Since the system can support multiple Devil’s staircases each at a distinct overall

adsorbate areal density, points along the boundary between adjacent staircases can come arbitrarily

close to violating the Gibbs phase rule. This dual-sided adsorbate geometry provides a means to

explore surface science for pairs of weakly coupled surfaces.

PACS numbers: 68.35.Rh, 68.43.-h
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The concept of two identical coupled two-dimensional electronic subsystems has been

explored in bilayer graphene [1, 2], the quantum Hall bilayers [3], and other emerging two-

dimensional systems. Here we explore the theory of a bilayer system in which the important

degrees of freedom are not electronic, but atomic – an adsorption bilayer. We consider

symmetric dual-sided adsorption, in which identical species adsorb to opposite surfaces of

a thin suspended membrane such as graphene [4, 5], hexagonal boron nitride, or transition

metal dichalcogenide. The structural phase diagram thus has the same variable – adsorbate

chemical potential – on both axes, since they refer to different half-spaces, µtop and µbottom.

Two traditional single-sided surface-physics systems are coupled, and thereby generate new

physics.

We study this geometry for a prototypical adsorbate system: alkali atoms on sp2 carbon.

The strong charge transfer here supports substantial cross-layer interactions; its simplicity

facilitates detailed analysis; and the principles gleaned will inform other choices of barrier and

adsorbate. The adsorption of alkali on graphene or graphite surfaces is well-studied [2, 6–

21]. At low coverage, potassium adsorbed on graphite [9, 11, 13–15] supports a dispersed

phase with a large K-K separation (up to 60 Å [9]) due to a repulsive long-range interaction,

although long-range crystalline order may be lacking. As the coverage increases, the K-K

distance decreases to about 14 Å (corresponding roughly to a 7 × 7 superlattice) at which

point a dense, metallically bonded 2×2 phase appears [9]. We examine potassium adsorption

onto both sides of suspended graphene, first within first-principles density functional theory

and then within an empirical treatment that enables a more complete exploration of the

phase diagram. Density functional calculations use projector augmented waves at 400-eV

plane-wave energy cutoff, as implemented within the Vienna Ab-initio Simulation Package

(VASP). Ionic relaxations were converged to < 0.01 eV/Å, and all in-plane lattice constants

were relaxed. The out-of-plane periodicity is fixed at 20 Å, with dipole corrections applied

to neutralize spurious c-axis interactions (although at this large separation the artificial

inter-sheet interaction is weak). Local-density approximation (LDA) and Perdew-Burke-

Ernzerhof (PBE) exchange-correlation treatments are reasonably consistent.

Previous calculations [14] for adsorption of potassium onto a graphite surface showed a

strong preference for the hexagonal center, a preference preserved in dual-sided adsorption

(for example, 3 × 3 superlattices adsorbed onto both sides of graphene prefer hexagonal

centers, with alternative bond-center and atom-top sites being 0.05 to 0.1 eV per K atom

2



6×6:0.5

5×5:0.25

3×3/3×3

2×2/6×6

FIG. 1: Sample of structures considered at the first-principles level. Solid black dots represent

upper-side adsorbates and hollow pink dots represent bottom-side adsorbates. Where several solid

circles occur in close proximity, the largest one is the lowest-energy location and the others are

alternative registries considered. For the 2 × 2/6 × 6 case we also examined a structure with the

two lattices coincident. In general, the system prefers opposing adsorbate lattices to be maximally

offset from each other. Notation for lattices is described in the main text.

higher in energy, see Fig. 1). We consider only hexagon-centered adsorption sites hereafter.

In general, the dual-sided system prefers that atoms in one adsorbate superlattice be centered

on empty regions of the adsorbate superlattice on the other side. Competing lattice registries,

also hexagon-centered but shifted as indicated by smaller dots in Fig. 1, are typically a few

tenths of meV (up to 0.16 eV) per unit cell (holding two alkali atoms) higher in energy.

This adsorbate-adsorbate repulsion is not simply a direct Coulombic repulsion between the

positively-charged alkali atoms, but also includes the Pauli repulsion of the electron clouds

that they create in the graphene sheet [12]. We consider in detail two classes of dual-sided

structures, both extensions of familiar single-sided adsorbate superlattices. First, structures

with an a× a superlattice on one side and and a b× b superlattice on the other, written as

a×a/b×b (and optimized for the best inter-lattice registry). A empty/bare side is represented

by a or b equal to ∞. The second class forms an overall n × n lattice in projection (i.e.
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counting adsorbates on both sides), but a fraction α of the atoms are on one side and 1− α

on the other (with the specific top/bottom pattern requiring further specification). We call

this case n × n : α. We have examined a × a/b × b for (a, b = 2, 3, 4, 5, 6, 7, 8, 2
√

3,

3
√

3, 4
√

3 and ∞) and n× n : α for (n= 2, 3, 4, 5, 6, 8 and α= 0.25, 0.5 ), as described in

supplementary material. For completeness, we also tested several rectangular lattices with

the superlattice unit vectors in a 1:
√

3/2 ratio (with the same cell areas as 4× 4 and 8× 8);

these are not favored in the final phase diagrams, either single or dual-sided.

Following a convex-hull construction, we obtain the phase diagram of the middle panel of

Fig. 2; (for comparison, the left panel shows what would result if the adsorbates on opposite

sides did not interact). The transition from sparse, repulsion-dominated phases at low

density to short-ranged metallic bonding at high density is consistent with experiment [9, 11].

The diagram is symmetric across the diagonal, since identical species are adsorbed to both

sides. The expansion of the phases with ∞ ×∞ on one side shows that the presence of

potassium on one side of the membrane repels potassium from the other side. The outer

regions of the interacting phase diagram at both high and low chemical potential retain the

horizontal or vertical phase boundaries of the non-interacting case. In contrast, the interior

of the phase diagram deviates markedly from the non-interacting case. Along the diagonal

dashed lines in the middle panel of Fig. 2 the average chemical potential µ̄ ≡ 1
2
(µtop+µbottom)

is constant while the difference in chemical potentials δµ ≡ µtop − µbottom varies. The

adsorbate pattern undergoes an interesting evolution: along the lower dashed line, it retains

an overall 5× 5 lattice when viewed in projection, but with the fraction α of the adsorbates

on one side changing from 0 → 0.25 → 0.5 → 0.75 → 1.0 as δµ increases. Potassium

progressively leaves one side and attaches to the other with a constant overall areal density

that is consistent with the constant µ̄. The same evolution with δµ seems to occur for the 6×6

and 8×8 structures, although computational limitations reduce the number of intermediate

values of α accessible for these larger lattices. Treating the top/bottom degree of freedom

as an effective Ising spin, the chemical potential difference δµ acts as a symmetry-breaking

field.

First-principles methods cannot exhaustively search the structural variants possible for

complex fractions α. Those with large denominators have very large unit cells – they are su-

percells of a supercell – and also require complex combinatoric choices for which atoms reside

on which side. However, a simple empirical electrostatic model can provide a surprisingly ac-
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FIG. 2: Left: Idealized phase diagram within DFT for potassium adsorbed onto both sides of a

suspended graphene barrier if each side is assumed to be independent (i.e. constructed by simply

superimposing two phase diagrams for one-sided adsorption). Middle: Phase diagram for dual-sided

adsorption of potassium onto a suspended graphene barrier at the density functional level, for the

full system with cross-barrier interactions. Right: The same phase diagram using an empirical

electrostatic dipole-dipole interaction to distinguish which adsorbates are on the top or bottom for

a given overall pattern. The circles mark locations where four phases almost co-exist at one point.

curate treatment, so long as one restricts oneself to comparing structures that have the same

projected pattern of adsorbates (where “projection” means ignoring which side each adsor-

bate is on). The long-ranged repulsion between potassium atoms adsorbed onto a graphite

surface at low areal density (or large n) is dominated by the band energy of the graphene

sheet, due to level filling by charge-transferred electrons [12]. For a suspended graphene

membrane, this level-filling effect is almost independent of which side each potassium atom

adheres to. The large energy scale of this level-filling effect thus determines the n in n×n : α,

i.e. the overall areal density, but not α or the detailed top/bottom pattern assumed within a

given α. The remaining which-side degree of freedom is governed by the weaker, long-ranged

electrostatic dipole-dipole interaction between adsorbates. Thus, although the total energy

of any specific adsorbate structure depends on subtle quantum mechanical effects due to

indirect adsorbate-adsorbate interactions mediated by charge transferred to the barrier, the

energy differences upon flipping an adsorbate from one side to another arise almost entirely

from long-ranged electrostatic dipole-dipole interactions that can be accurately described

within a classical electrostatic model. This separation in energy scales becomes more pro-
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nounced at lower areal densities. In such an empirical model, each adsorbed alkali ion (plus

the transferred charge resident in the membrane nearby) is modeled as an electrostatic dipole

whose magnitude is extracted from first-principles calculations. Within LDA, the 8× 8 : 0,

7 × 7 : 0, 6 × 6 : 0 and 5 × 5 : 0 lattices have nearly identical dipole moments of 1.54,

1.53, 1.51, and 1.48 eÅ per adsorbate respectively, since the charge transfer saturates at

one electron per adsorbate with nearly-constant c-axis relaxation. Switching K atoms from

one side to another leaves the charge transfer and the c-axis separation almost unchanged.

The 6 × 6 : 0 and 6 × 6 : 0.5 lattices differ in total energy by 0.06 eV per K atom. If we

fit the dipole moment of a classical electrostatic model to reproduce this result, we obtain

a moment of 1.46 eÅ, in excellent agreement with the first-principles moments and a clear

indication that dipolar electrostatics controls the variation in total energy with α at fixed

n. A similar comparison for 8 × 8 : 0 versus 8 × 8 : 0.5 and 5 × 5 : 0 versus 5 × 5 : 0.5

yield classical moments of 1.51 eÅ and 1.42 eÅ respectively; (the 5 × 5 lattice is the more

challenging test, since its higher areal density accentuates relaxations that are absent in the

simple electrostatic treatment). PBE results also agree well with a classical dipole model,

with slightly (∼10%) higher dipole moments; thus the main results should be insensitive to

the choice of exchange-correlation functional, beyond a slight overall shift in energy scale.

We focus on the 6× 6 : α family of structures for detailed mapping of the phase diagram

along a line of fixed average µ̄ and variable δµ, i.e. the upper dotted line in Fig.2. For a

given α one must optimize the choice of which K atoms to place on which side; for a cell

containing N adsorbates there are
(
N
M

)
possibilities for α = M/N , which we explore by

Monte Carlo-based simulated annealing. To obtain arbitrarily fractions, one must simulate

supercells of the 6× 6 structure, i.e. supercells of a supercell. We write the i× j supercell

of the 6 × 6 base cell using square brackets, as [i × j]. The most energetically favorable

such super-supercells are close to square; we have examined [3× 3], [4× 4], [4× 5], [4× 6],

[5 × 5], [5 × 6], [5 × 7], [6 × 6], and [6 × 8]; (this set can access fractions up to those with

denominator 48, which is sufficient to firmly establish that the simpler fractions actually

seen to dominate the phase diagram are not spurious results of limited sampling). The

bottom inset in Fig. 3 shows the resulting lattice energies. The reflection-symmetric α = 1
2

phase is lowest in energy, but is favored only around δµ ≈ 0. The top inset of Fig. 3 shows

the lowest energy lattice structure for α = 0.6 from annealing. In constructing the phase

diagram, the simplest structures (all of the a × a/b × b cases plus the n × n:α cases with
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FIG. 3: Fraction of potassium on upper side of the membrane versus δµ for 6× 6 : α. A complete

list of fraction appearing is given in supplemental material. Top inset: Example of the lowest

energy conformation for 6 × 6:0.6 obtained from Monte Carlo optimization, where solid/hollow

dots represent top/bottom-side potassium. Bottom inset: Convex hull construction for the energy

per potassium versus α for 6× 6:α, where each point represents a specific α optimized for cell size,

shape, and top/bottom distribution.

α= 0 , 1
2
, or 1) are treated at a first-principles level. The structural energetics of the more

complex fractions (n × n:α for n= 5, 6, 8 and α = 1
3
, 1
4
, 2
5
, 1
6
, 1
9
, 1
12

etc.) are handled within

the empirical dipole-dipole model, referenced against the DFT energy of n× n:α (α= 0 , 1
2

or 1) system; (as one special case, 5× 5 at α = 1
4

is small enough to handle within DFT).

The convex hull of this distribution yields the striking stepped phase sequence depicted

in Fig. 3. Do these fraction sequences follow any simple patterns? The low-density limit

can be expressed as an expanding series of near-square cells: (3 × 3)−1, (3 × 4)−1, (4 ×
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4)−1, (4 × 5)−1, (5 × 5)−1 · · · . In the dilute limit (α(1 − α) � 1), each new minority dipole

begins life immersed in majority dipoles, so the energy of successive dipole flips is roughly

constant. Our intuitions deeper into the phase diagram can be developed by considering

a one-dimensional case where particles are arrayed on a line in one of two configurations,

a model examined in the context of conductive polymers by Hubbard [22] and Bak and

Bruinsma [23] with a (convex, long-ranged) electrostatic interaction and variable doping

level. In one dimension, all fractional doping levels appear and every rational α is stable

over a finite chemical potential interval: a devil’s staircase. The devil’s staircases arise

when a system travels through a series of higher/lower order commensurations between

two distinct periodicities [23, 26, 27]. Examples include dipolar lattice boson gas with

infinite-ranged convex interaction [24, 25], (anti)ferroelectric smectic liquid crystals [28–30],

charge/magnetic ordering in various atomic-scale lattices [31–33], or physical adsorption

onto an incommensurate substrate. In the adsorbate bilayer, the two interacting lattices are

identical and the incommensuration arises from their relative occupation. Supplementary

materials show how the width ∆µ(α) of each step α in the one-dimensional model of Hubbard

and Bak/Bruinsma can be written in terms of L(α), the length of the unit cell, which

is a monotonically increasing function of the denominator of α, i.e. the complexity of

the fraction. For dipolar particles with the interactions normalized to a nearest-neighbor

interaction strength of ±1, we obtain

∆µ(α) =
4π2

L2

(
1

sin2( π
L

)
−
π cos( π

L
)

Lsin3( π
L

)
− 1

3

)
(1)

The width of the stability interval decreases as the denominator of α increases. Although

there is no general analytic solution for the devil’s staircase in two dimensions [25, 34],

we also expect a dense series of stable fractions with the simplest fractions occupy the

largest spans of chemical potential. The left and right derivatives of the lattice energy E(α)

are unequal for both the one-dimensional and two-dimensional systems, and the derivative

difference gives the chemical potential interval occupied by that fraction. The fractions 1
2
,

1
4
, 1

5
and especially 1

3
dominate the sequence. For 1

3
, 1

4
, and 1

9
, one side hosts a

√
3 ×
√

3,

2× 2 or 3× 3 sublattice (respectively) within the overall 6× 6 adsorption pattern. Simple

patterns can enjoy more repetition, and so they tend to dominate the phase diagram.

In the case of dual-sided adsorption, we have multiple devil’s staircases build on different

n× n superlattices rising in parallel towards α = 1
2
, with steeper slopes for higher n. Since
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each staircase has infinite number of small steps, the system comes arbitrarily close to

violating the Gibbs phase rule along the dividing line between distinct staircases. The inset

to the right panel of Fig. 2 shows one such location, with four phases nearly coexisting. The

phase diagram’s symmetry across the diagonal suggests that ideal four-fold vertices might

be possible in different dual-sided systems, where the point in question is on the diagonal.

Is this system attainable experimentally? An impermeable suspended graphene mono-

layer has already been used to separate two independent spaces [35], when suspended above

a pothole-shaped depression in an SiO2 substrate. Transferring this accomplishment to

through-holes in e.g. Si3N4 membranes [36–39] would yield the desired dual-sided adsorp-

tion geometry. A typical micron-squared dimension for such a membrane would host several

million graphene unit cells, sufficient to minimize finite-size boundary effects and access

fairly complex fractions α in the interior. Our calculations lack entropic contributions and

are thus for T = 0; the maximum temperature at which a given fraction can be observed

should be on the order of the width of the chemical potential span of that fraction, ∼ 100K

for simple fractions such as 1/2, 1/3, 1/4, 2/5 and 1/9 and ∼ 10K for more complex frac-

tions such as 11/48, 13/30 and 16/35. At such cryogenic temperatures the vapor pressure

of potassium is extremely low, so exchange with a reservoir is not possible on experimental

timescales. The appropriate ensemble is then fixed N , not fixed chemical potential, perhaps

including anneal cycles (or electromigration from in-sheet currents) to speed the approach

to equilibrium.

Many of the phenomena discussed here for the specific case of potassium on graphene are

actually generic geometrical effects for a pair of opposing weakly coupled adsorbate systems.

The chemical potential difference across the barrier acts as an effective field that controls the

imbalance in coverage between the two sides. In the case of alkali/graphene, the operation of

two distinct adsorbate-adsorbate interactions – one sensitive (Coulombic) and one insensitive

(band filling) to which-side the adsorbate is adhered to – creates a hierarchy of energy scales

which separates the dynamics of the superlattice index n from that of the fractional coverage

imbalance α. This hierarchy then generates multiple parallel Devil’s staircases, each for

a different n and of a different slope. The need for a suspended membrane suggests that

intrinsic quenched disorder will be weak, and thus there are prospects to observe fine-grained

phase behavior, if the system can equilibrate on experimental timescales at the cryogenic

temperatures needed to resolve discrete steps in the staircase.
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[21] A. Grüneis et al., Phys. Rev. B 79, 205106 (2009).

[22] J. Hubbard, Phys. Rev. B 17, 494 (1978).

[23] P. Bak, R. Bruinsma, Phys. Rev. Lett. 49, 249 (1982).

[24] F. J. Burnell, Meera M. Parish, N. R. Cooper, S. L. Sondhi, Phys. Rev. B. 80, 174519 (2009).

10



[25] B. Capogrosso-Sansone, C. Trefzger, M. Lewenstein, P. Zoller, G. Pupillo, Phys. Rev. Lett.

104, 125301 (2010).

[26] P. Bak, J. von Boehm, Phys. Rev. B 21, 5297 (1980).

[27] K. Ohwada, et al Phys. Rev. Lett. 87, 086402 (2001).

[28] A. Fukuda, Y. Takanishi, T. Isozaki, K. lshikawa and H. Takezoe, J. Mater. Chem. 4, 997

(1994).

[29] Y. Takanishi, et al J. Appl. Phys 30, 2023 (1991).

[30] X. Y. Wang and P. L. Taylor, Phys. Rev. Lett. 76, 640 (1996).

[31] M. Takigawa, et al Phys. Rev. Lett. 110, 067210 (2013).

[32] J.M. Tranquada, D. J. Buttrey, V. Sachan and J.E. Lorenzo, Phys. Rev. Lett. 73, 1003 (1994).

[33] D, de Fontaine, G. Ceder, M. Asta, Nature (London) 343, 544, (1990).

[34] A. Kalz, and G. Y. Chitov, Phys. Rev. B 88, 14415 (2013).

[35] J. S. Bunch et al., Nano Lett. 8, 2458 (2008).

[36] K. S. Ralls, R. A. Buhrman, and R. C. Tiberio, Appl. Phys. Lett. 55, 2459 (1989).

[37] J. Kohler, M. Albrecht, C. R. Musil , E. Bucher, Physica E. 4, 196 (1999).

[38] R. luthi et al., Appl. Phys. Lett. 75, 1314 (1999).

[39] M. M. Deshmukh, D. C. Ralph, M. Thomas, and J. Silcox, Appl. Phys. Lett. 75, 1631 (1999).

11


