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We report the first demonstration of a regime of operation in optical parametric oscillators (OPOs)
in which the formation of temporal simultons produces stable femtosecond half-harmonic pulses.
Simultons are simultanous bright-dark solitons of a signal field at frequency ω and the pump field
at 2ω which form in a quadratic nonlinear medium. The formation of simultons in an OPO is
due to the interplay of nonlinear pulse acceleration with the timing mismatch between the pump
repetition period and the cold-cavity round trip time, and is evidenced by sech2 spectra with broad
instantaneous bandwidths when the resonator is detuned to a slightly longer round trip time than
the pump repetition period. We provide a theoretical description of an OPO operating in a regime
dominated by these dynamics, observe the distinct features of simulton formation in an experiment,
and verify our results with numerical simulations. These results represent a new regime of operation
in nonlinear resonators which can lead to efficient and scalable sources of few-cycle frequency combs
at arbitrary wavelengths.

Introduction.—The temporal modes which arise from
cavity nonlinear dynamics have attracted intense inter-
est due to both their diversity of operating regimes and
their applications. Recent work has focused on resonators
with cubic nonlinearities which form dissipative solitons
from a balance between intracavity dispersion and self-
phase modulation[1–3]. These systems have success-
fully generated few cycles pulses and phase-stabilized fre-
quency combs in the range from 400 nm-3.5 µm[4–6] and
have been employed in optical clocks[7], spectroscopy[8],
telecommunications[9], and attoscience[10]. While con-
siderable effort is being invested to extend these sources
to other wavelength ranges[11], such operation requires
overcoming the challenges associated with developing
broadband laser gain media and high finesse resonators
at new wavelengths.

Nonlinear resonators based on quadratic nonlineari-
ties offer a compelling new direction for the field. In
contrast with cubic nonlinearities, the χ(2) associated
with quadratic nonlinearities may be patterned to quasi-
phasematch a rich variety of multi-wave interactions.
χ(2) materials are well developed and frequently used to
produce pulses at otherwise inaccessible wavelengths, but
many of the regimes of operation in these systems remain
relatively unexplored. One promising system is the syn-
chronously pumped degenerate optical parametric oscil-
lator (OPO), in which a χ(2) resonator pumped at 2ω
generates a doubly resonant half-harmonic at ω. While
many pulse formation mechanisms have been proposed
in continuous-wave-pumped degenerate OPOs[12–15], to
date these systems have not yet achieved mode-locked
femtosecond pulses by using such dynamics[16, 17]. Con-
versely, synchronously pumped degenerate OPOs have
been used successfully to generate half-harmonic combs,
but their pulse formation mechanisms are less under-
stood. Key results include the demonstration of instanta-

neous octave-spanning-spectra[18], few-cycle pulses[19],
intrinsic phase and frequency locking[20] (which trans-
lates the coherence properties of the pump source onto
the half-harmonic signal), and conversion efficiencies as
high as 65%[21, 22]. Recent work suggests a number
of competing pulse formation mechanisms exist in such
OPOs[23].

In this letter we introduce and demonstrate a regime
of operation in a near-synchronously pumped degenerate
OPO in which stable half-harmonic pulses are formed
by temporal simultons. This letter will proceed in three
parts. (i) We develop a reduced model of simulton forma-
tion, and explain the characteristics of simultons in the
context of OPO operation. (ii) We present experimen-
tal results, and identify signatures of simulton formation.
(iii) Numerical simulations are used to better understand
the underlying dynamics and are shown to capture the
behavior exhibited by the OPO. Based on the agreement
between these three parts, we are able to connect the
proposed intracavity simulton dynamics to the observed
behavior of the OPO.
Theory.— Temporal simultons are simultaneous

bright-dark solitons of the signal at ω and the pump at
2ω, which occur in a degenerate traveling wave optical
parametric amplifier (OPA) due to group velocity mis-
match and gain saturation[24, 25]. The coupled wave
equations for phasematched OPA are

∂zAω(z, t) = κA2ωA
∗
ω + D̂ωAω, (1a)

∂zA2ω(z, t) = −∆β′∂tA2ω − κA2
ω + D̂2ωA2ω, (1b)

where we have shifted the time coordinate to be co-
moving with the group velocity of the signal wave, and
include a π/2 phase in the pump envelope to make the
equations of motion and their solutions real, assuming
negligible higher order dispersion. Aω is the field en-
velope, normalized such that |Aω|2 is the instantaneous
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FIG. 1: (a) Field envelopes of a simulton, showing the sech-
pulse signal (blue) and tanh pump (orange). (b) Evolution
of pump and signal fields in an OPA from the linear to the
simulton regimes. Dotted line - the evolution of the signal
field undergoing linear temporal walkoff. (c) Schematic of
the synchronously pumped OPO cavity. Cavity length ad-
justments are made by mounting M1 on a piezo stage. (d-e)
Displacement of intracavity signal relative to a perfectly syn-
chronous half-harmonic pulse undergoing linear propagation
(dotted lines) (d) After M1 the signal acquires a small delay,
∆TRT, relative to the incoupled pump due to the timing mis-
match. (e) After optical parametric amplification the signal
acquires a nonlinear shift in group delay ∆T due to simulton
formation, which compensates the timing mismatch ∆TRT.

power of the ω wave, and ∆β′ = v−1
g,2ω−v−1

g,ω is the group

velocity mismatch. κ =
√

2η0ωdeff
w0nω

√
πn2ωc

is the nonlinear cou-

pling where deff is the effective nonlinear coefficient, and
η0 is the impedance of free space. Here we have assumed
the pump and the signal are confocal near-field Gaus-
sian beams, with a 1/e2 beam radius of w0 for the signal.

The dispersion operator D̂ω =
∑∞
j=2

(−i)j+1β(j)
ω

j! ∂jt con-
tains contributions from higher dispersion orders, where

β
(j)
ω represents the jth derivative of propagation constant
β at frequency ω. When D̂ω, and D̂2ω are negligible given
the bandwidth of the pulses and the length of the non-
linear medium, the simulton solution of a traveling wave
OPA is given by [24, 25]

Aω(z, t) =
a√
2τ

sech

(
t− T
τ

)
, (2a)

A2ω(z, t) = −E2ω tanh

(
t− T
τ

)
, (2b)

where a2 = 2(∆β′ + γ0τ)γ0/κ
2 is the signal pulse en-

ergy, τ is the pulse width, T = −γ0τz represents a
shift in the signal pulse relative to linear propagation
due to gain saturation, and γ0 = κE2ω is the small-
signal gain coefficient. Simultons occur when the lead-

ing edge of a bright sech2 signal pulse depletes a quasi-
continuous wave pump, and the trailing edge converts
back to the pump frequency through second harmonic
generation (SHG) with a π phase relative to the unde-
pleted pump (Fig.1(a)). The pump forms a tanh2 dark
soliton coupled to the bright sech2 signal pulse, and the
pair co-propagate with an intensity dependent velocity
which exceeds that of either wave, v−1

g,sim = v−1
g,ω − γ0τ .

We generalize this solution to include gain and loss
using the manifold projection method described in [23],
and obtain the evolution of the parameters a, τ , and T of
the sech-like signal pulse from Eq.(2a). When ∆β′z � τ ,
a(z), T (z), and τ(z) evolve as

∂za = γ0a

[
1− a2

a2
sim

]
, (3a)

∂zT = −γ0τ
a2

a2
sim

, (3b)

∂zτ = 0. (3c)

Here a2
sim = 2∆β′γ0/κ

2 is the simulton energy, and
we have approximated the pump as a flat-top pulse,
A2ω(0, t) = max(A2ω(0, t)). Eqs.(3a-3c) can be under-
stood in two limits. When a� asim we recover the evo-
lution of a degenerate OPA with an undepleted pump.
The signal is amplified as a(z) = a(0)eγ0z, and propa-
gates with a linear group velocity, i.e. ∂zT = 0. When
a = asim we recover the simulton, Eqs.(2a-2b). In the
limit of the approximations made here, the simulton so-
lution is a stable attractor. If a sech signal pulse is seeded
into a degenerate OPA such that a > asim, it will trans-
fer energy to the pump through SHG until the simulton
solution is reached. Eqs.(3a-3b) can be solved for the full
evolution of a dissipative simulton, resulting in:

a(z) =
a(0)eγ0z√

1 + a2(0)
a2sim

(e2γ0z − 1)
, (4a)

∆T (z) = τ ln

(
a(0)eγ0z

a(z)

)
. (4b)

∆T (z) = T (z) − T (0) is the shift in group delay accu-
mulated due to nonlinear acceleration in a single pass
through the OPA crystal. A schematic of simulton for-
mation is illustrated in Fig.1(b), showing the evolution of
the pump and signal fields in an OPA from the linear to
the simulton regimes. The signal is seen to undergo lin-
ear temporal walkoff due to group velocity mismatch and
extract gain until the pump is depleted. Once depleted,
the pump forms a co-propagating dark soliton, and the
pair propagates at the simulton velocity.

Fig.1(c-e) show the dynamics of a simulton OPO. On
each round trip, a new pump pulse enters the cavity
through the input coupler, M1 (Fig.1(c)), and the sig-
nal accumulates a small group delay ∆TRT, hereafter re-
ferred to as the timing mismatch, due to an offset be-
tween the pump repetition period and the cold-cavity
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round trip time (Fig.1(d)). After passing through the
OPA crystal, labelled PPLN, the signal is amplified, and
accumulates a simulton group advance ∆T (Fig.1(e)).
The signal is partially out-coupled through M4, with a
fraction R of the power returning to M1. Simulton for-
mation in an OPO is a double balance of energy and
timing in which the gain extracted over an OPA crys-
tal of length L balances the cavity loss, a2(0) = Ra2(L),
and the simulton acceleration balances the timing mis-
match, ∆T (L) = ∆TRT . When the timing condition is
satisfied, the signal becomes synchronous with the pump
and forms a half-harmonic pulse which inherits both it’s
carrier-envelope offset frequency and comb spacing from
the pump. The equations for steady state, with Eqs.(4a-
4b) determine the simulton pulsewidth:

τ =
2∆TRT

2γ0L+ ln(R)
. (5a)

The pulsewidth of a simulton OPO is seen to shrink
with increasing pump power, in contrast to the conven-
tional τ ∝

√
P “box-pulse” scaling developed in [23]. For

positive detunings (∆TRT > 0), the simulton group ad-
vance allows for the formation of half-harmonic pulses
which are synchronous with the pump at multiple cav-
ity lengths. Negatively detuned (∆TRT < 0) simultons
cannot form when ∆β′ > 0 since pump depletion only
provides a group advance for the signal pulse. Instead,
the OPO operates in a non-degenerate regime analyzed
in [23]. The timing mismatch is thus a critical design
parameter which determines both the mode of operation
and the bandwidth of the OPO.

Experimental Results.—We study the behavior of an
OPO as the timing mismatch is varied around perfect
synchronization with the pump. The OPO cavity (see
Supplemental [26]) consists of a bowtie resonator with a
tunable round-trip delay of ∼4 ns (Fig.1(c)), and a large
output coupling of (1 − R) = 65% for the signal. OPA
occurs in a 1-mm-long Brewster-cut MgO-doped periodi-
cally poled lithium niobate (PPLN) crystal placed at the
focus between M2 and M3. The PPLN crystal has a pol-
ing period of 31.8 µm to phasematch degenerate OPA
of a signal at 2090 nm, and is pumped by 70 fs pulses
at 250 MHz produced by 1045-nm mode-locked Yb-fiber
laser (Menlo Systems Orange A) with an average power
of up to 950 mW. The OPO is only resonant for the signal
and oscillates around cavity lengths where the signal ac-
quires a phase shift of 0 or π relative to the pump on each
round trip, leading to a discrete set of resonances whose
behavior depends strongly on the timing mismatch.

We first consider the resonance at which the OPO cav-
ity is most nearly synchronized to the pump repetition
rate, labeled Peak 0 in Fig.2(a). The synchronous peak
has the lowest threshold, 175 mW, a slope efficiency of
158%, and a peak conversion efficiency of 46%. More-
over, it exhibits a sech2 spectrum, which loses bandwidth
with increasing power (Fig.2(b-c)), in accordance with

FIG. 2: (a) Measured conversion efficiency for each resonance,
with the resonances enumerated relative to perfect synchro-
nization. Positive “peak” numbers correspond to a long cav-
ity. Solid lines represent numerical simulations of peak 0, +1,
and +2, and empty grey circles denote nondegenerate opera-
tion. (b) The scaling with pump power of the transform lim-
ited pulsewidth (3 dB) for peaks 0-2, computed from spectra
such as those shown in c-d. For large powers, peak 0 shows
an increase in pulsewidth in accordance with [23], while peaks
+1 and +2 show a monotonic decrease in pulsewidth which
agrees well with Eq.(5a). (c-d) (Color lines) Spectra recorded
as a function of pump power for peak 0 and +1 respectively.
Each curve is labeled with the corresponding pump power
used in the experiment, with arrows denoting the 3dB band-
width. (e) Measured signal spectrum as a function of tim-
ing mismatch for a 550 mW pump, with the associated peak
numbers. (f) Simulated signal spectrum in dB relative to the
maximum value, as a function of timing mismatch, with the
three regimes we have identified indicated.

the conventional box-pulse scaling[23]. As the cavity is
positively detuned (∆TRT > 0), two more resonances are
found, labeled Peak +1 and +2 in Fig.2(a). These “long
cavity” resonances have irregularly spaced thresholds as
∆TRT becomes increasingly positive, and have measured
slope efficiencies as high as 570%, with peak efficiencies
of 55%. Peaks +1 and +2 exhibit sech2 spectra which
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monotonically increase in bandwidth as the pump power
is increased (Fig.2(b,d)) in accordance with the simul-
ton scaling, Eq.(5a). The spectra deviate from the ex-
ponential tails of a sech2 spectrum beyond ±10 THz due
to atmospheric absorption around 1850 nm. Peak +1
achieves a 3dB bandwidth as high as 240 nm, which can
support pulses as short as 19 fs. When the cavity is
negatively detuned (∆TRT < 0) the OPO transitions to
non-degenerate operation and the spectra split into a dis-
tiguishable signal and idler (Fig.2(e)). The peaks in the
non-degenerate regime exhibit thresholds which increase
uniformly as ∆TRT becomes increasingly negative, slope
efficiencies less than 40%, and conversion efficiencies less
than 40% (Fig.2(a)). We therefore identify three regimes
of operation associated with the timing mismatch: syn-
chronous (∆TRT = 0), non-degenerate (∆TRT < 0), and
simulton (∆TRT > 0).
Simulation.— To better understand the dynamics

which determine the three regimes of operation observed
in the experiment and verify that the positively detuned
resonances correspond to simulton operation, we study
the OPO using numerical methods. The OPO is modeled
as an OPA followed by a linear feedback loop. On each
round trip, we solve Eqs.(1a-1b) using split-step Fourier
methods including all dispersion orders computed from
the dispersion relations given in [27]. We model the feed-
back loop as a linear filter for the signal:

A(n+1)
ω (0, t) = F−1{

√
R(Ω)e−iφ(Ω)F{A(n)

ω (L, t)}}.

The phase φ(Ω) is measured relative to a half-harmonic
signal which is perfectly synchronous with the pump

φ(Ω) = φ0 + πl + ∆TRTΩ + ∆φ(Ω),

where φ0 represents an offset between the cavity res-
onances and the cavity length which synchronizes the
pump and signal, ∆φ(Ω) represents the quadratic and
higher order dispersion of the cavity mirrors, and l =
c∆TRT/λ2ω parameterizes the peak number as the cav-
ity length is varied from perfect synchronization, with
resonances centered on cavity lengths such that l ∈ Z.
Further details of R(Ω) and ∆φ(Ω) are discussed in the
supplemental.

The solid lines in Fig.2(a) show the simulated conver-
sion efficiency of the resonances in the synchronous and
simulton regimes, and are shown to be in good agreement
with the experimental thresholds and slope efficiencies.
Deviations which occur at higher powers are likely due
to radial variations in pump depletion not included in the
simulaton. A simulation of the spectrum as a function of
timing mismatch with parameters corresponding to the
experiment is shown in Fig. 2(f), with the three regimes
of operation indicated by the dashed boxes. The sim-
ulations show excellent agreement with the experimen-
tal data (Fig. 2(e)) in all three operating regimes. In
the case of ∆TRT > 0, stable femtosecond half-harmonic
pulses are generated through the formation of simultons.

FIG. 3: (a) Simulated evolution of the intracavity pulse in-
tensity over many round trips for ∆TRT =-3.5 fs showing the
interference of a distinct signal and idler. The dotted line de-
notes the trajectory of a linearly propagating half-harmonic
signal pulse. (b) Pulse evolution for ∆TRT = 0 fs showing the
formation of a half-harmonic pulse synchronized to the pump
repetiton rate. (c) Simulated pulse evolution for ∆TRT =7 fs
showing the formation of a half-harmonic pulse which, upon
depleting the pump, is able to accelerate forward in time and
synchronize to the pump repetition rate.

Having shown agreement between the numerical model
and experiment, we now use the model to better un-
derstand the femtosecond pulse formation dynamics in
the OPO. The evolution of the signal pulse is shown
in Fig.3(a-c) for each of the three regimes of operation.
Each round trip is recorded at the output of the OPA and
normalized to its peak amplitude to visualize the pulse
motion. The dotted white lines show the expected trajec-
tory of a linearly propagating half-harmonic signal pulse,
which acquires a delay ∆TRT on every round trip. In
these figures, the time coordinates have been shifted such
that a signal peaked at t = 0 corresponds to a pulse walk-
ing symmetrically from the tail of the pump at ∆β′L/2
to the leading edge of the pump −∆β′L/2. For a nega-
tively detuned peak (Fig.2(a)), the pulse envelope shows
a 10 THz modulation in time (vertical fringes), resulting
from interference of a signal and idler split from degen-
eracy by ±10 THz. The interference fringes are seen to
shift on each round trip, corresponding to a ±10 MHz
offset of the signal and idler carrier-envelope-offset fre-
quency fceo from that of a half-harmonic signal (hori-
zontal fringes). When the cavity length is tuned into
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synchronization (Fig.2(b)), the signal builds up without
any motion relative to the pump until the pump sat-
urates, shifting the signal forward in time until a new
steady state is found on the leading edge of the pump.
The evolution for a positively detuned cavity is shown
in Fig.2(c). The signal initially tracks the trajectory of
a linearly propagating pulse, shifting towards the tail of
the pump. Once the signal is intense enough to deplete
the pump, it accelerates, becoming faster than would be
possible under linear propagation, and thereby reaches a
steady state, synchronous with the pump repetition rate.

The surprising behavior exhibited by the long cavity
resonances, namely a nonlinear acceleration of the signal
pulses, indicates that the OPO dynamics in this regime
correspond to simulton formation. Furthermore, the full
numerical model facilitates an intuitive picture of the be-
havior of the simulton peaks. The large thresholds and
slope efficiencies of the simulton peaks are due to the
pulsewidth of the pump. When a� asim the signal pulse
will accumulate many successive group delays due to the
timing mismatch, and experience a decrease in gain due
to a reduction in the temporal overlap with the pump.
Since simulton operation requires the signal to be bright
enough to deplete the pump, threshold then corresponds
to the condition that the signal builds up from quantum
noise to the simulton energy before the temporal walkoff
reduces the gain seen by the signal pulse below the cavity
loss. Once this condition is satisfied, the signal acceler-
ates back into the pump and depletes it, leading to large
slope efficiencies.

Conclusion.—We have introduced a new pulse for-
mation mechanism based on temporal simultons in res-
onators with a quadratic nonlinearity. Temporal simul-
tons form due to a competition between timing mismatch
and nonlinear pulse acceleration, and exhibit favorable
scaling laws for the formation of few cycle pulses at ar-
bitrary wavelengths. We have provided experimental ev-
idence of an OPO operating in the simulton regime, and
confirm that such an OPO can be used to efficiently gen-
erate sech2 spectra with large instantaneous bandwidths
in agreement with theory. Our results indicate that de-
sign rules for simulton OPOs are in sharp contrast with
those of conventional OPOs, and such design rules will
be the subject of future publications.
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