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In recent years local chiral interactions have been derived and implemented in quantum Monte
Carlo methods in order to test to what extent the chiral effective field theory framework impacts
our knowledge of few- and many-body systems. In this paper, we present Green’s function Monte
Carlo calculations of light nuclei based on the family of local two-body interactions presented by our
group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and
scattering-state observables in the three-nucleon sector. These interactions include ∆ intermediate
states in their two-pion-exchange components. We obtain predictions for the energy levels and level
ordering of nuclei in the mass range A= 4–12, accurate to ≤ 2% of the binding energy, in very
satisfactory agreement with experimental data.

PACS numbers: 21.30.-x, 21.60.De,27.10.+h,27.20.+n

A major goal of nuclear theory is to explain the spec-
tra, structure, and reactions of nuclei in a fully micro-
scopic approach. In such an approach, which we will
refer to below as the basic model of nuclear theory, the
nucleons interact with each other via many-body (pri-
marily, two- and three-body) effective interactions, and
with external electroweak probes via effective currents
describing the coupling of these probes to individual nu-
cleons and many-body clusters of them.

The nuclear Hamiltonian in the basic model is taken
to consist of non-relativistic kinetic energy, and two-
and three-body interactions. There are indications that
four-body interactions may contribute at the level of
∼ 100 keV in 4He, but current formulations of the ba-
sic model do not typically include them (see, for exam-
ple, Ref. [1]). Two-body interactions consist of a long-
range component, for inter-nucleon separation r & 2 fm,
due to one-pion exchange (OPE) [2], and intermediate-
and short-range components, for, respectively, 1 fm .
r . 2 fm and r . 1 fm. Up to the mid-1990’s, such
interactions were based almost exclusively on meson-
exchange phenomenology. Those of the mid-1990’s [3–5]
were constrained by fitting nucleon-nucleon (NN) elas-
tic scattering data up to lab energies of 350 MeV, with
χ2/datum ' 1 relative to the database available at the
time [6]. Two well-known and still widely used examples
in this class are the Argonne v18 (AV18) [4] and CD-
Bonn [5]. These so-called realistic interactions also con-
tained isospin-symmetry-breaking (ISB) terms. At the
level of accuracy required [6], full electromagnetic inter-
actions, along with strong interactions, had to be speci-

fied in order to fit the data precisely, and the AV18 model
included electromagnetic corrections up to order α2 (α is
the fine structure constant).

Already in the 1980’s, accurate three-body calculations
showed that contemporary NN interactions did not pro-
vide enough binding for the three-body nuclei, 3H and
3He [7]. In the late 1990’s and early 2000’s this real-
ization was extended to the spectra (ground and low-
lying excited states) of light p-shell nuclei in calcula-
tions based on quantum Monte Carlo (QMC) methods [8]
and later confirmed independently in no-core shell-model
studies [9]. Consequently, the basic model with NN in-
teractions fit to scattering data, without the inclusion of
a three-nucleon (3N) interaction, is incomplete.

Because of the composite nature of the nucleon and, in
particular, the prominent role of the ∆ resonance in pion-
nucleon scattering, multi-nucleon interactions arise quite
naturally in meson-exchange phenomenology. The Illi-
nois 3N interactions [10] contain a dominant two-pion ex-
change (TPE)—the venerable Fujita-Miyazawa interac-
tion [11]—and smaller multi-pion exchange components
resulting from the excitation of intermediate ∆’s. The
most recent version, Illinois-7 (IL7) [12], also contains
phenomenological isospin-dependent central terms. The
small number (four) of parameters that fully character-
ize it were determined, in conjunction with the AV18, by
fitting 23 ground or low-lying nuclear states in the mass
range A=3–10. The resulting AV18+IL7 Hamiltonian
then led to predictions of about 100 ground- and excited-
state energies up to A=12, including the 12C ground- and
Hoyle-state energies, in good agreement with the corre-
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sponding empirical values [1].

A new phase in the evolution of the basic model, and
renewed interest in its further development, have been
spurred by the emergence in the early 1990’s of chiral
effective field theory (χEFT) [13–15], a low-energy effec-
tive representation of QCD. Within χEFT many stud-
ies have been carried out dealing with the construction
of NN and 3N interactions [16–30] and accompanying
ISB corrections [31–33]. These interactions were typi-
cally formulated in momentum space, and included cut-
off functions to regularize their behavior at large mo-
menta which, however, made them strongly non-local
when Fourier-transformed in configuration space, and
therefore unsuitable for use with quantum Monte Carlo
methods. Among these, in particular, Green’s Func-
tion Monte Carlo (GFMC) is the method of choice to
provide reliable solutions of the many-body Schrödinger
equation—presently for up to A=12 nucleons—with full
account of the complexity of the many-body, spin- and
isospin-dependent correlations induced by nuclear inter-
actions (see Ref. [1] and references therein for an exhaus-
tive review of GFMC).

In order to overcome these difficulties, in recent years
local, configuration-space chiral NN interactions have
been derived [34–36]. Here, we focus on the fam-
ily of local interactions constructed by our group [36].
They are written as the sum of an electromagnetic-
interaction component, vEM

ij , including first- and second-
order Coulomb, Darwin-Foldy, vacuum polarization, and
magnetic moment terms (as in Ref. [4]), and a strong-
interaction component, vij , characterized by long- and
short-range parts [36]. The long-range part includes
OPE and TPE terms up to next-to-next-to-leading or-
der (N2LO) in the chiral expansion [37], derived in the
static limit from leading and sub-leading πN and πN∆
chiral Lagrangians. The short-range part is described
by charge-independent contact interactions up to N3LO
and charge-dependent ones up to NLO [36], character-
ized by a total of 26 low-energy constants (LECs). Such
potentials should therefore be understood as improved-
N2LO, with N3LO contact terms treated as phenomeno-
logical remainders that prove crucial for a good fit to NN
data. In this context, it is worthwhile pointing out that
there exist alternative counting schemes for contact oper-
ators [38–41] based, e.g., on renormalization group anal-
yses, that imply their promotion to lower orders of the
low-energy expansion, as compared to the ordinary Wein-
berg counting. This would in turn explain the prominent
role they take in bringing the theoretical description close
to experimental data.

We constructed two classes of interactions, which only
differ in the range of laboratory energy over which the fits
were carried out, either 0–125 MeV in class I or 0–200
MeV in class II (the fits used the 2013 NN database,
including the deuteron ground-state energy and two-
neutron scattering length, as assembled by the Granada

group [42]). For each class, three different sets of cutoff
radii (RS, RL) were considered (RS, RL) = (0.8, 1.2) fm in
set a, (0.7,1.0) fm in set b, and (0.6,0.8) fm in set c, where
RS and RL enter respectively the configuration-space
cutoffs for the short- and long-range parts of vij [36].
The χ2/datum achieved by the fits in class I (II) was
. 1.1(. 1.4) for a total of about 2700 (3700) data
points. We will refer to these high-quality NN inter-
actions generically as the Norfolk vij ’s (NV2s), and des-
ignate those in class I as NV2-Ia, NV2-Ib, and NV2-Ic,
and those in class II as NV2-IIa, NV2-IIb, and NV2-IIc.

FIG. 1. Diagrams illustrating schematically the contributions
to the chiral 3N interaction. Nucleons, ∆’s, and pions are
denoted by solid, thick-solid, and dashed lines, respectively.
The circle in panel (b) represents the vertex involving the

LECs c1, c3, and c4 in L(2)
πN .

The NV2s were found to provide insufficient attraction,
in GFMC calculations, for the ground-state energies of
nuclei with A= 3–6 [36, 43, 44], thus corroborating the
insight realized in the early 2000’s within the older (and
less fundamental) meson-exchange phenomenology. To
remedy this shortcoming, we construct here the leading
3N interaction Vijk in χEFT, including ∆ intermediate
states. It is illustrated diagrammatically in Fig. 1, and
consists [20, 21] of a long-range piece mediated by TPE
and denoted with the superscript 2π, panels (a) and (b),
and a short-range piece parametrized in terms of two con-
tact interactions and denoted with the superscript CT,
panels (c) and (d),

Vijk =
∑

cyclic ijk

(
V 2π
ijk + V CT

ijk

)
. (1)

In configuration space, the TPE term from intermediate
∆ states, panel (a) in Fig. 1, and from interactions pro-
portional to the LECs c1, c3, and c4 in the sub-leading

chiral Lagrangian L(2)
πN [45], panel (b), reads
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ijk =
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A
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ijk T
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]
, (2)

with spin and isospin operator structures defined, respec-
tively, as Σlm ≡ Z̃π(rlm)σl · r̂lm, where rlm ≡ rl − rm,
and

Σ
(∓)
ijk ≡

[
X̃ij , X̃jk

]
∓
, T (∓)

ijk ≡ [τi · τj , τj · τk]∓ , (3)
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X̃ij ≡ T̃π(rij)Sij + Ỹπ(rij)σi · σj . (4)

Here [ . . . , . . . ]∓ denote commutators (−) or anti-
commutators (+), Sij is the standard tensor operator,
σi and τi are Pauli spin and isospin matrices relative
to nucleon i, and Ỹπ(r), T̃π(r), and Z̃π(r) are, respec-
tively, standard Yukawa and tensor functions and com-
binations of these, regularized by the cutoff CRL

(r) in-
troduced in Ref. [37] (for convenience, they are listed in
the online supplemental materials [46]). The LECs c̃3
and c̃4 are related to the corresponding c3 and c4 in L(2)

πN

via c̃3 = c3 − h2
A/(9m∆N ) and c̃4 = c4 + h2

A/(18m∆N ),
where hA and m∆N are, respectively, the N -to-∆ axial
coupling constant and ∆-N mass difference. The values
of these constants as well as the LECs c1, c3, and c4, the
(average) pion mass mπ and decay amplitude fπ, and
(average) nucleon mass m and axial coupling constant
gA, are taken from Tables I and II of Ref. [37].

The CT term is parametrized as

V CT
ijk =

gA cD
96π

m3
π

Λχ f4
π

τi · τk X̃ik [CRS
(rij) + CRS

(rjk) ]

+
cE

Λχ f4
π

τi · τk CRS
(rij)CRS

(rjk) , (5)

where CRS(r) is the Gaussian cutoff introduced in
Ref. [37] (it is also given in Ref. [46]), Λχ is the chiral-
symmetry-breaking scale taken as Λχ = 1 GeV, and the
two (dimensionaless) LECs cD and cE are determined by

simultaneously reproducing the experimental 3H ground-
state energy, E0(3H), and the central value of the
neutron-deuteron (nd) doublet scattering length, 2and.
These observables are calculated with hyperspherical-
harmonics (HH) expansion methods (see Ref. [47] and
references therein).

Due to the strong correlation between the observables
E0(3H) and 2and (Phillips line) and between E0(3H) and
E0(4He) (Tjon line), an alternative way to determine cD
and cE , as pointed out in Refs. [48, 49], would be to
constrain these LECs by reproducing the tritium binding
energy and Gamow-Teller matrix element contributing to
its β-decay. Such a strategy was adopted in Refs. [50, 51]
in relation to the (momentum-space) chiral interactions
developed by Entem and Machleidt [18]. However, the
problem with its implementation here is that the models
of nuclear axial currents developed so far in Refs. [52, 53],
do not include ∆ intermediate states, in contrast to the
present chiral interactions.

The cD, cE values for each NV2-I(a-b) and NV2-II(a-b)
with the cutoff radii (RS, RL) in the Norfolk 3N interac-
tions matching those of the corresponding NV2s to make
the NV2+3 models are listed in Table I. We observe
that models NV2-Ic and NV2-IIc are not considered any
further in the present work, owing to the difficulty in the
convergence of the HH expansion and the severe fermion-
sign problem in the GFMC imaginary-time propagation
with these interactions [36].

TABLE I. The (dimensionaless) values of cD and cE determined for the different NV2+3 chiral interactions having cutoff radii
(RS, RL) equal to (0.8,1.2) fm for models Ia and IIa, and (0.7,1.0) fm for models Ib and IIb are shown along with the 3H, 3He,
and 4He ground-state energies (in MeV) and nd doublet scattering length (in fm), obtained in HH calculations without and
with the inclusion of the three-body interactions; the experimental values are E0(3H) = –8.482 MeV, E0(3He) = –7.718 MeV,
E0(4He) = –28.30 MeV [54], and 2and = (0.645 ± 0.010) fm [55]. The E0(3H) and 2and (central value) are exactly reproduced
when 3N interactions are included, and are not listed below in this case.

w/o 3N with 3N

Model cD cE E0(3H) E0(3He) E0(4He) 2and E0(3He) E0(4He)

Ia 3.666 –1.638 –7.825 –7.083 –25.15 1.085 –7.728 –28.31
Ib –2.061 –0.982 –7.606 –6.878 –23.99 1.284 –7.730 –28.31
IIa 1.278 –1.029 –7.956 –7.206 –25.80 0.993 –7.723 –28.17
IIb –4.480 –0.412 –7.874 –7.126 –25.31 1.073 –7.720 –28.17

In Table I we also report the nd scattering length and
ground-state energies of 3H, 3He, and 4He obtained with-
out 3N interaction as well as those predicted for 3He and
4He when this interaction is included. Increasing the
laboratory-energy range over which the NN interaction
is fitted, from 0–125 MeV in class I to 0–200 MeV in class
II, decreases the A= 3–4 ground-state energies calculated
without the 3N interaction by as much as 1.3 MeV in 4He

with model b. However, when the 3N interaction is in-
cluded, the effect is reversed and much reduced; in 4He
the increase amounts to 140 keV in going from model Ib
to IIb. The dependence on the cutoff radii (RS, RL), i.e.,
the difference between the rows Ia-Ib and IIa-IIb, is sig-
nificant without the 3N interaction, but turns out to be
negligible when it is retained, being in this case of the or-
der of a few keV and hence comparable to the numerical
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precision of the present HH methods. This tradeoff is of
course achieved through the large variation of the LECs
cD and cE ; cE is found to be natural for all models, while
cD only for models Ib and IIa. Lastly, in the online sup-
plemental materials [46], we show that the NV2+3 chiral
interactions developed here do not resolve the discrep-
ancies between the calculated and measured polarization
observables in low-energy pd elastic scattering, including
the well-known “Ay puzzle” [56, 57].

Before presenting the GFMC predictions for the spec-
tra of larger nuclei, it is worthwhile comparing the HH
and GFMC results for the three- and four-nucleon bound
states. The GFMC-calculated ground-state energies with
model NV2+3-Ia are E0(3H) = –8.463(9), E0(3He) = –
7.705(9), and E0(4He) = –28.24(3), where the Monte
Carlo statistical errors are given in parentheses. The
small differences (. 0.5%) between the HH results listed
in Table I and the GFMC ones are due in part to intrin-
sic numerical inaccuracies of these methods, and in part
to the fact that the HH wave functions include small ad-
mixtures with total isospin T = 3/2 for A=3 nuclei, and
T = 1 and 2 for A=4, beyond their corresponding domi-
nant isospin components with T = 1/2 and T = 0. These
admixtures are induced by ISB terms present in the NV2
interaction models, which are neglected in the present
GFMC calculations.

The GFMC energy results calculated with the NV2+3-
Ia model are shown in Fig. 2 for 37 different nuclear states
in A=4–12 nuclei. They are compared to results from
the older AV18+IL7 model [1] and experiment [54]. The
agreement with experiment is impressive for both Hamil-
tonians, with absolute binding energies very close to ex-
periment, and excited states reproducing the observed or-
dering and spacing, indicating reasonable one-body spin-
orbit splittings. The rms energy deviation from exper-
iment for these states is 0.72 MeV for NV2+3-Ia com-
pared to 0.80 MeV for AV18+IL7 (note that 11B has not
been computed with AV18+IL7). The signed average
deviations, +0.15 and – 0.23 MeV respectively, are much
smaller, indicating no systematic over- or under-binding
of the Hamiltonians. For both Hamiltonians, the inclu-
sion of the 3N interactions is in many cases necessary
to get ground states that are correctly bound against
breakup, e.g., 6He is not bound with just the NN inter-
action [36], but is in the current work. The lowest 3+

and 1+ states of 10B are of particular interest. For both
AV18 and NV2-Ia without 3N interactions, the 1+ state
is incorrectly predicted as the ground state (for NV2-Ia
by 1.9 MeV) but including the 3N interactions gives the
correct 3+ ground state. However, it is important to em-
phasize that in the AV18+IL7 model the four parameters
in the 3N interaction are fitted to the energies of many
nuclear levels up to A = 10.

Twelve of the states shown are stable ground states,
while another six are particle-stable low-lying excitations,
i.e., they decay only by electroweak processes. The re-

maining states are particle-unstable, i.e., they can decay
by nucleon or cluster emission, which is much more rapid
than electroweak decay, but about half of these have nar-
row decay widths ≤ 100 keV. Because GFMC does not
involve any expansion in basis functions, it correctly in-
cludes effects of the continuum. If the energy propagation
is continued to large enough imaginary time, the wave
function will evolve to separated clusters and the energy
to the sum of the energies of those clusters. For the phys-
ically narrow states, the GFMC constrained-path propa-
gation starting from a confined variational trial function
reaches a stable energy without any noticeable decay over
the finite τ used in the present calculations. For physi-
cally very wide states (> 1 MeV), e.g., the first 2+ and
4+ states in 8Be, the calculations show a smooth energy
decline beyond τ ∼ 0.1 MeV−1 [58], while the rms radius
shows a smooth growth, indicative that the propagation
is disassembling the system into its component parts. In
these few cases the energy of the state is estimated from
the value at the beginning of the smooth energy decline.
Additional particle-stable isobaric analog states, e.g., in
8B and 9,10C, have been calculated in GFMC, but are
not shown.

A VMC survey of more than 60 additional states has
also been made, including higher excited states, more
isobaric analog states, e.g., in 7Be, and various particle-
unstable nuclei like 7He, 8C, and 9B. While the most im-
portant test of a Hamiltonian is the ability to reproduce
known states, it is also important not to predict states
in places where they are not observed, e.g., predicting
a particle-stable 10He ground state would be a failure of
the model. The VMC survey has found no such problems
for either the NV2+3-Ia or AV18+IL7 models.

The very satisfactory agreement between the predicted
and observed spectra validates the present formulation
of the basic model in terms of NN and 3N chiral inter-
actions, constrained by data in the few-nucleon systems
only. Of course, one should not dismiss the earlier success
of the AV18/IL7 realistic interactions, even though the
agreement in that case was obtained by relying on exper-
imental data beyond A= 3 in order to constrain the 3N
interaction. If anything, the overall success of the chiral
and realistic formulations shows that Hamiltonians con-
taining two very different models of the NN force, both
of which provide good fits to NN data, and 3N forces
containing just a small number of parameters fitted to a
few data, can give very similar descriptions of light-nuclei
spectra. This gives us confidence in predictions made in
the framework of the basic model of nuclear theory.

Key to this significant advance is our group’s ability to
reliably solve the nuclear many-body problem for bound
states of up to A= 12 nuclei with QMC methods, and for
the three- and four-nucleon bound and scattering states
with HH methods. This capability, especially for QMC,
is driven by ever expanding computational resources and
by continuing improvements in algorithms. In particu-
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lar, the development of specific libraries operating un-
der mpi [59]—the Asynchronous Dynamic Load Balanc-
ing (adlb) library and Distributed MEMory (dmem)
library—have allowed us to fully exploit the massively
parallel Theta supercomputer (3,624 Intel Knight’s Land-

ing nodes with 64 cpus/node) of the Argonne Leadership
Computing Facility. Even under these favorable condi-
tions, however, the final 12C ground-state calculation still
consumed 650,000 cpu-hours.
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FIG. 2. The energy spectra of A= 4–12 nuclei obtained with the NV2+3-Ia chiral interactions are compared to experimental
data [54]. Also shown are results obtained with the phenomenological AV18+IL7 interactions [1].

Future work will investigate the other chiral Hamilto-
nian models developed here, in particular their impact on
nuclear spectra, as well as refinements in the 3N interac-
tion obtained by retaining subleading terms [23, 60] and
by constraining them via fits to either nuclear spectra or
3N scattering observables.
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