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We show that a simple modification of the surface code can exhibit an enormous gain in the error correction
threshold for a noise model in which Pauli Z errors occur more frequently than X or Y errors. Such biased
noise, where dephasing dominates, is ubiquitous in many quantum architectures. In the limit of pure dephasing
noise we find a threshold of 43.7(1)% using a tensor network decoder proposed by Bravyi, Suchara and Vargo.
The threshold remains surprisingly large in the regime of realistic noise bias ratios, for example 28.2(2)% at
a bias of 10. The performance is in fact at or near the hashing bound for all values of the bias. The modified
surface code still uses only weight-4 stabilizers on a square lattice, but merely requires measuring products of Y’
instead of Z around the faces, as this doubles the number of useful syndrome bits associated with the dominant
Z errors. Our results demonstrate that large efficiency gains can be found by appropriately tailoring codes and
decoders to realistic noise models, even under the locality constraints of topological codes.

For quantum computing to be possible, fragile quantum in-
formation must be protected from errors by encoding it in a
suitable quantum error correcting code. The surface code [1]
(and related topological stabilizer codes [2]) are quite remark-
able among the diverse range of quantum error correcting
codes in their ability to protect quantum information against
local noise. Topological codes can have surprisingly large er-
ror thresholds—the break-even error rate below which errors
can be corrected with arbitrarily high probability—despite us-
ing stabilizers that act on only a small number of neighboring
qubits [3]. It is the combination of these high error thresh-
olds and local stabilizers that make topological codes, and the
surface code in particular, popular choices for many quantum
computing architectures.

Here we demonstrate a significant increase in the error
threshold for a surface code when the noise is biased, i.e.,
when one Pauli error occurs at a higher rate than others. For
qubits defined by nondegenerate energy levels with a Hamilto-
nian proportional to Z, the noise model is typically described
by a dephasing (Z-error) rate that is much greater than the
rates for relaxation and other energy-nonpreserving errors.
Such biased noise is common in many quantum architectures,
including superconducting qubits [4], quantum dots [5], and
trapped ions [6], among others. The increased error thresh-
old is achieved by tailoring the standard surface code stabi-
lizers to the noise in an extremely simple way and by em-
ploying a decoder that accounts for correlations in the error
syndrome. In particular, using the tensor network decoder of
Bravyi, Suchara and Vargo (BSV) [7], we give evidence that
the error correction threshold of this tailored surface code with
pure Z noise is p. = 43.7(1)%, a four-fold increase over the
optimal surface code threshold for pure Z noise of 10.9% [7].

These gains result from the following simple observations.
For a Z error in the standard formulation of the surface code,
the stabilizers consisting of products of Z around each plaque-
tte of the square lattice contribute no useful syndrome infor-
mation. Exchanging these Z-type stabilizers with products of
Y around each plaquette still results in a valid quantum sur-
face code, since these Y -type stabilizers will commute with

the original X-type stabilizers. But now there are twice as
many bits of syndrome information about the Z errors. Tak-
ing advantage of these extra syndrome bits requires an opti-
mized decoder that can use the correlations between the two
syndrome types. The standard decoder based on minimum-
weight matching breaks down at this point, but the BSV de-
coder is specifically designed to handle such correlations. We
show that the parameter x, which defines the scale of correla-
tion in the BSV decoder, needs to be large to achieve optimal
decoding, so in that sense accounting for these correlations is
actually necessary. These two ideas—doubling the number of
useful syndrome bits and a decoder that makes optimal use of
them—give an intuition that captures the essential reason for
the increased threshold. It is nonetheless remarkable just how
large an effect this simple change makes.

We also consider more general Pauli error models, where
Z errors occur more frequently than X and Y errors with a
nonzero bias ratio of the error rates. We show that the tai-
lored surface code exhibits these significant gains in the error
threshold even for modest error biases in physically relevant
regimes: for biases of 10 (meaning dephasing errors occur 10
times more frequently than all other errors), the error thresh-
old is already 28.2(2)%. Figure 1 presents our main result of
the threshold scaling as a function of bias. Notably, we find
that the tailored surface code together with the BSV decoder
performs near the hashing bound for all values of the bias.

Error correction with the surface code. The surface
code [1] is defined by a 2D square lattice having qubits on
the edges with a set of local stabilizer generators. In the usual
prescription, for each vertex (or plaquette), the stabilizer con-
sists of the product of the X (or Z) operators acting on the
neighboring edges. We simply exchange the role of Z and
Y, as shown in Fig. 2. By choosing appropriate “rough” and
“smooth” boundary conditions along the vertical and horizon-
tal edges, the code space encodes one logical qubit into the
joint +1 eigenspace of all the commuting stabilizers with a
code distance d given by the linear size of the lattice.

A large effort has been devoted to understanding error
correction of the surface code and the closely related toric
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FIG. 1. Threshold error rate p. as a function of bias 7. The dark
gray line is the zero-rate hashing bound for the associated Pauli er-
ror channel. Lighter gray lines show the hashing bound for rates
R = 0.001 and 0.01 for comparison; the surface code family has
rate 1/n for n qubits. Blue points show the estimates for the thresh-
old using the fitting procedure described in the main text together
with 1 standard deviation error bars. The point at the largest bias
value corresponds to infinite bias, i.e., only Z errors.

code [8]. The majority of this effort has focused on the cases
of either pure Z noise, or depolarizing noise where X, Y,
and Z errors happen with equal probability; see Refs. [2, 9]
for recent literature reviews. Once a noise model is fixed,
one must define a decoder, and the most popular choice is
based on minimum-weight matching (MWM). This decoder
treats X and Z noise independently, and has an error thresh-
old of around 10.3% for pure Z noise with a naive implemen-
tation [3, 10] or 10.6% with some further optimization [11].
Many other decoders have been proposed however, and these
are judged according to their various strengths and weak-
nesses, including the threshold error rate, the logical failure
rate below threshold, robustness to measurement errors (fault
tolerance), speed, and parallelizability. Of particular note are
the decoders of Refs. [12—20] since these either can handle, or
can be modified to handle, correlations beyond the paradigm
of independent X and Z errors.

The BSV decoder. Our choice of the BSV decoder [7] is
motivated by the fact that it gives an efficient approximation to
the optimal maximum likelihood (ML) decoder, which maxi-
mizes the a posteriori probability of a given logical error con-
ditioned on an observed syndrome. This decoder has also pre-
viously been used to do nearly optimal decoding of depolariz-
ing noise [7], achieving an error threshold close to estimates
from statistical physics arguments that the threshold should
be 18.9% [21]. (In fact, our own estimate of the depolariz-
ing threshold using the BSV decoder is 18.7(1)%.) Because
it approximates the ML decoder, the BSV decoder is a natu-
ral choice for finding the maximum value of the threshold for
biased noise models.
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FIG. 2. The modified surface code, tailored for biased Z noise, with
logical operators given by a product of Y along the top edge and a
product of X along the left edge. The stabilizers are shown at right.

The decoder works by defining a tensor network with local
tensors associated to the qubits and stabilizers of the code.
The geometry of the tensor network respects the geometry of
the code. Each index on the local tensors has dimension 2
initially, but during the contraction sequence this dimension
grows until it is bounded by x, called the bond dimension.
When y is exponentially large in n, the number of physical
qubits, then the contraction value of the tensor network returns
the exact probabilities conditioned on the syndrome of each of
the four logical error classes. Such an implementation would
be highly inefficient, but using a truncation procedure during
the tensor contraction allows one to work with any fixed value
of x > 2 with a polynomial runtime of O(nx?). In this way,
the algorithm provides an efficient and tunable approximation
of the exact ML decoder, and in practice small values of x
were observed to work well [7]. We refer the reader to Ref. [7]
for the full details of this decoder.

Biased Pauli error model. A Pauli error channel is defined
by an array p = (1 — p, ps, by, p») corresponding to the prob-
abilities for each Pauli operator I (no error), X, Y, and Z,
respectively. We define p = p, + p, + p. to be the prob-
ability of any single-qubit error, and we always consider the
case of independent, identically distributed noise. We define
the bias 7) to be the ratio of the probability of a Z error occur-
ring to the total probability of a non-Z Pauli error occurring,
so that n = p./(ps + py). For simplicity, we consider the
special case p, = p, in what follows. Then for total error
probability p, Z errors occur with probability p, = ﬁp,

and p, = p, = mp. When n = 1/2, this gives the
standard depolarizing channel with probability p/3 for each
nontrivial Pauli error, and taking the limit 7 — oo gives only
Z errors with probability p. Biased Pauli error models have
been considered by a number of authors [4, 22-27], but we
note that there are several different conventions for the defini-
tion of bias. Comparison between channels with different bias
but the same total error rate is facilitated by the fact that the
channel fidelity to the identity is a function only of p.
Hashing bound. The quantum capacity is the maximum
achievable rate at which one can transmit quantum informa-
tion through a noisy channel [28]. The hashing bound [29-31]
is an achievable rate which is generally less than the quantum
capacity [32]. For Pauli error channels, the hashing bound
takes a particularly simple form [28], and says that there exist



quantum stabilizer codes that achieve a rate R = 1 — H(p),
with H the Shannon entropy. The proof of achievability in-
volves using random codes, and it is generally hard to find
explicit codes and decoders that perform at or above this rate
for an arbitrary channel, especially if one wishes to impose
additional constraints such as local stabilizers. The quantum
capacity itself is still unknown for any Pauli channel where at
least two of (p,, py, p-) are nonzero.

Summary of numerics. Here we outline our numerical
study of the threshold; see Ref. [33] for full details.

Our numerical implementation makes only a minor modifi-
cation to the BSV decoder. To avoid changing the definitions
of the tensors used in Ref. [7], we use the symmetry that we
can exchange the role of Z noise in the modified surface code
to the role of Y noise in the standard surface code. Then all
of the definitions in Ref. [7] carry over unchanged. The only
difference is that we perform two tensor network contractions
for each decoding sequence. There is an arbitrary choice as
to whether to contract the network row-wise or column-wise.
Rather than pick just one, we average the values of both con-
tractions. We empirically observe improved performance with
this modification.

Using bond dimension y = 48, we see excellent conver-
gence for most of the range of bias (with some caveats [33]),
and across the full range of bias we observe threshold behav-
ior. Moreover, this threshold is at the hashing bound for all
1 < 100. That the performance of the decoder saturates for
1 > 300 may be a side effect of an insufficiently large x (lim-
ited to x = 48 in our study) or a real effect due to the presence
of relatively low weight (O(y/n)) logical errors consisting of
only Z errors. In the regions that are a fixed distance below
the threshold, as in Fig. 3, we observe an exponential decay in
the logical failure rate f ~ exp(—ad), where o may depend
on the bias and is an increasing function of (p. — p). This
constitutes strong evidence of an error correction threshold.

To obtain an explicit estimate of the threshold p., we use
the critical exponent method of Ref. [10]; again, see Ref. [33]
for full details. Our results are summarized in Fig. 1.

Fault tolerant syndrome extraction. Our study has fo-
cussed on the error correction threshold under the assumption
of ideal syndrome extraction. To see if the gains observed in
this setting carry over to applications in fault-tolerant quantum
computing, one would need to consider the effects of faulty
syndrome measurements and gates. A full fault-tolerant anal-
ysis is beyond the scope of this work, but we briefly consider
the key issues here.

First, the BSV decoder that we have used to investigate
this ultra-high error threshold is not fault tolerant, but some
clustering decoders are [13]. Developing efficient, practical
fault-tolerant decoders with the highest achievable thresholds
remains a significant challenge for the field.

An added complication with a biased noise model is that
the gates that perform the syndrome extraction must at least
approximately preserve the noise bias in order to maintain an
advantage [4]. For the tailored surface code studied here, one
could appeal to the techniques of Refs. [4, 25], where we note
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FIG. 3. Exponential decay of the logical failure rate f with respect
to code distance d in the regime p < p. for n = 100 and x = 48.
We observe scaling behavior of the form f ~ exp(—ad) where a
depends on the bias and is an increasing function of (p. — p). In this
bias regime the decoder performance is likely farthest from optimal,
but the decay is still clearly exponential over this range. Other values
of 17 show the same general scaling behavior, though with different
decay rates «.. The statistical error bars from 30000 trials per point
are smaller than the individual plot points in every case.

that Y-type syndromes can be measured using a minor mod-
ification of the X-syndrome measurement scheme. We note
that these syndrome extraction circuits are significantly more
complex (involving the use of both ancilla cat states and gate
teleportation) compared with the standard approach for the
surface code with unbiased noise, and this added complexity
will undoubtedly reduce the threshold.

More optimistically, we note that the standard method for
syndrome extraction in the surface code [34] can be directly
adapted to this tailored code and maintains biased noise on
the data qubits. Ancilla qubits are placed in the centers of
both plaquette and vertex stabilizers of Fig. 2, and will be
both initialized and measured in the X basis. Sequences
of controlled-X (vertex) and controlled-Y (plaquette) gates,
with the ancilla as the control and data qubits as the target,
yield the required syndrome measurements analogous to the
standard method. In this scheme, we note that high-rate Z
errors on the ancilla are never mapped to the data qubits; low-
rate X and Y errors on the ancilla can cause errors on the
data qubits but the noise remains biased. Measurement er-
rors will occur at the high rate, but this can be accommodated
by repeated measurement. Note, as argued by Aliferis and
Preskill [4], native controlled-X and controlled-Y gates are
perhaps not well motivated in a system with a noise bias, but
nonetheless this simple scheme illustrates that, in principle,
syndromes can be extracted in this code while preserving the
noise bias. To develop a full fault-tolerant syndrome extrac-
tion circuit in a noise biased system would require a complete
specification of the native gates in the system and an under-
standing of their associated noise models.

Discussion. Our numerical results strongly suggest that in
systems that exhibit an error bias there are significant gains to
be had for quantum error correction with codes and decoders
that are tailored to exploit this bias. It is remarkable that the
tailored surface code performs at the hashing bound across a



large range of biases. This means that it is not just a good
code for a particular error model, but broadly good for any
local Pauli error channel once it is tailored to the specific noise
bias. It is also remarkable that a topological code, limited to
local stabilizers, does so well in this regard.

Many realizations of qubits based on nondegenerate en-
ergy levels of some quantum system have a bias—often quite
significant—towards dephasing (Z errors) relative to energy-
non-conserving errors (X and Y errors). This suggests tailor-
ing other codes, and in particular other topological codes, to
have error syndromes generated by X - and Y -type stabilizers.
Even larger gains might be had by considering biased noise in
qudit surface codes [35, 36].

For qubit topological stabilizer codes, the threshold for ex-
act ML decoding with general Pauli noise can be determined
using the techniques of Ref. [21], which mapped the ML de-
coder’s threshold to a phase transition in a pair of coupled
random-bond Ising models. It would be interesting to explore
this phase boundary for general Pauli noise beyond the depo-
larizing channel that was studied numerically in Ref. [21].

We have employed the BSV decoder to obtain our threshold
estimates because of its near-optimal performance, but it is not
the most efficient or practical decoder for many purposes. One
outstanding challenge is to find good practical decoders that
can work as well or nearly as well across a range of biases.
The clustering-type decoders [12, 13] appear well suited for
this task, and have the added advantage that some versions
of these decoders (e.g. Ref. [37]) generalize naturally to all
abelian anyon models such as the qudit surface codes.

The most pressing open question related to this work is
whether the substantial gains observed here can be preserved
in the context of fault tolerant quantum computing.
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