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One of the largest obstacles to building a quantum computer is gate error, where the physical
evolution of the state of a qubit or group of qubits during a gate operation does not match the in-
tended unitary transformation. Gate error stems from a combination of control errors and random
single qubit errors from interaction with the environment. While great strides have been made in
mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity
in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical
qubit devices promise significant increases in logical state lifetime, but translating those improve-
ments into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols
for gates on and between small logical qubit devices which inherit the parent device’s tolerance to
single qubit errors which occur at any time before or during the gate. We consider two such devices,
a passive implementation of the three-qubit bit flip code, and the author’s own Very Small Logical
Qubit design, and propose error-tolerant gate sets for both. The effective logical gate error rate
in these models displays superlinear error reduction with linear increases in single qubit lifetime,
proving that passive error correction is capable of increasing gate fidelity. Using a standard phe-
nomenological noise model for superconducting qubits, we demonstrate a realistic, universal one-
and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for
same-duration operations on single qubits or pairs of qubits. These developments further suggest
that incorporating small logical qubits into a measurement based code could substantially improve
code performance.

To build a fault-tolerant, error-corrected quantum
computer, every code operation (one- and two-qubit
gates, state preparation, measurement and idling) must
be performed to extremely high fidelity [1, 2]. While
such fidelities have been achieved in single qubit gates
[3–7], improving two-qubit gate performance is consider-
ably more difficult [8–11]. Experimentally realized gate
error is not far below threshold rate, primarily limited by
random single qubit error mid-gate. Further, the classical
processing required for a code involving millions of physi-
cal qubits is daunting. Increasing the cycle time to reduce
this burden increases error rates, further degrading code
performance. An improved qubit primitive with much
higher idle coherence and two-qubit gate fidelity could
thus make it easier to implement a topological code.

Toward this end, small logical qubit designs, where
a quantum degree of freedom is encoded across multi-
ple physical devices and protected by autonomous error
correction, have attracted much recent interest [12–20],
including the first experimental demonstration of QEC
exceeding breakeven [21]. However, due to these systems’
more complex Hilbert spaces, increased idle lifetime does
not usually imply improved gate fidelity. To achieve this,
we extend the “error-transparent” quantum gates of Vy
et al [22] to autonomous logical qubits [44]. In these pro-
tocols, the gate Hamiltonian is tuned to commute with
single-qubit errors, when acting on the logical state man-
ifold, at all times during the gate operation. Specifically,
if our logical qubit has logical states |ψLi〉, suffers ran-
dom errors {Ej}, and is operated by time-dependent gate
Hamiltonians {HGk}, error transparency is achieved if:

[Ej , HGk] |ψLi〉 = 0 ∀ {i, j, k} . (1)

The presence of the logical states in this definition is
critical, as the operators arising from the commutators
[Ej , HGk] cannot in general be set to zero, though they
can be chosen to annihilate the |ψLi〉. This criteria en-
sures that subsequent error correction will recover the
transformed logical state regardless of when the error oc-
curred. The error rate of such a gate in the ideal limit
would thus decrease as TgTR/T

2
1 (where Tg, TR and T1 are

the gate, error correction and random error timescales,
respectively), leading to large fidelity improvements.

These gates can be thought of as extending the concept
of a decoherence-free-subspace [23–25] for small logical
qubits, to mitigate errors against which a DFS cannot be
directly formulated. They complement recent work for
cat codes [15, 26, 27], though those schemes fall short of
a complete, universal error-transparent gate set (ETGS).
We will outline the principles of an ETGS in a passive
implementation of the three-qubit bit flip code [12–14,
19], describe a realistic ETGS for the author’s VSLQ
architecture [18], and benchmark both through numerical
simulation. We will demonstrate super-linear decreases
in gate error with increased T1, and show that two-qubit
gate error rates in the low 10−4 range are achievable at
current base qubit coherence.

Error transparent gates for a passive bit flip
code: To demonstrate the principles of error trans-
parency, we first consider a passive implementation of
the three-qubit bit flip code (PBFC). This small logical
qubit has Hamiltonian HP = −J (σz1σ

z
2 + σz2σ

z
3 + σz1σ

z
3),

and allows for random σx errors to be passively corrected
through resonant energy transfer to a lossy subsystem.
Independent of the details of the device’s implementa-
tion, we consider a white noise error model of random σx
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spin flips at a rate ΓP combined with incoherent “repair”
operations Ri at a rate ΓR. The density matrix ρ of a
PBFC evolves under the Lindblad equation [28]

∂tρ =

3∑
i=1

ΓP (σxi ρσ
x
i − ρ) +

(
RiρR

†
i −

1

2

{
ρ,R†iRi

})
Ri ≡

√
ΓR
4

σxi
((

1− σzi σzi−1
) (

1− σzi σzi+1

))
. (2)

The logical states of the PBFC are |0L〉 = |000〉 and
|1L〉 = |111〉; as argued previously [12–14, 19, 20], the
logical error rate for these states is given by ΓL '
6Γ2

P / (3ΓP + ΓR), decreasing quadratically in ΓP .
A good pair of logical operators for the PBFC are

ZL ≡ σz1 and XL ≡ σx1σ
x
2σ

x
3 . Since we only consider

errors through the σxi channels XL is automatically error
transparent, as it commutes with all σxi . Its fidelity is
thus unaffected by single random errors. However, ZL is
not, since it anticommutes with σx1 . Consequently, when
acting with ZL as a gate Hamiltonian (applied for a finite
time tg), if a σx1 error occurs before or during the gate,
the system will evolve under −ZL until the error is cor-
rected, undoing a random fraction of the gate operation.
Since the time between bit flip errors and their correction
is not measurable, this is a logical error source, and the
error rate of ZL decreases only linearly with ΓP tg.

We now introduce an error transparent ZL, by incor-
porating stabilizer terms into the gate operator itself:

ZL → σz1 (1− (1− σz1σz2) (1− σz1σz3) /2) . (3)

To see why this new ZL commutes with all three σxi , we
first note that if a σx2 or σx3 error has occurred, at least
one of the projectors (1− σz1σz2) and (1− σz1σz3) will still
return zero (both return zero on a logical state), leav-
ing only σz1 , which commutes trivially. As for σx1 , if we
act with σx1 the σz1 eigenvalue is flipped and σz1 returns
the opposite eigenvalue of the parent logical state, so that
ZL → −ZL. If this occurs in the middle of the gate pulse,
this will partially invert the full ZL operation and cause
a logical error. However, σx1 also breaks two σzi σ

z
j bonds,

which causes the product of projectors in (3) to return
−2, flipping the sign again and allowing the gate to evolve
as intended. Of course, two simultaneous σx errors will
still cause a logical error. A gate set which is capable of
applying XL and ZL partially and in combination is ca-
pable of implementing arbitrary single-PBFC rotations.
Performance of the error-transparent ZL is benchmarked
in FIG. 1. Gate fidelity for both the PBFC and VSLQ
below was found by evolving the system’s Lindblad equa-
tion until the decay rate equilibrates (eliminating spuri-
ous short-time behavior; this occurs when t ' 1/ΓR),
simulating the gate operation with noise, and averaging
the resulting error rate 1− Tr (ρ · ρideal) (where ρ is the
evolved density matrix and ρideal models error-free evo-
lution under the same gate) over all six combinations of
initial X,Y, Z eigenstates (thirty-six for two-qubit gates).
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FIG. 1: (Color online) Error rate for gate operations in the
passive bit flip code described in the text and Eq. 2. Solid lines
correspond to a passive “repair” rate ΓR = 10/tg, and dashed
lines correspond to ΓR = 5/tg, where tg is the gate dura-
tion. The processes plotted are idling (blue, circles), the bare
single-device ZL operation (HG = σz

1 ; gold, squares), bare
CZ between two devices (green, diamonds), and the error-
transparent CZ with an entangling gate Hamiltonian given
by Eq. 4 (red, triangles). Error rates for error transparent
ZL are nearly identical to idling. As the error-transparent
gate Hamiltonians commute with single qubit errors their er-
ror rate decreases nearly quadratically in decreasing ΓP . In
contrast, the bare operations do not commute with local σx

i

errors, and exhibit scaling which is little better than linear.
These results demonstrate that error transparent gate proto-
cols meeting the criteria (1) can improve gate fidelity through
passive, autonomous error correction.

Building on these results, we can also construct a
two-PBFC entangling gate. At the operator level, on
qubits A and B control-Z can be expressed as CZ =
exp iπ4 (ZLA − ZLB − ZLAZLB). The single-PBFC parts
of this operator can be implemented normally, though
the entangling part of the operation contains a six-spin
term. We can reduce this operator count to four by defin-
ing Cij ≡

(
1− σzi σzj

)
/2 and replacing ZLAZLB with

ZLAZLB → σz1Aσ
z
1B

(
1− 2CA12C

A
13 − 2CB12C

B
13

)
(4)

The highest order term here is a four-spin term, and
remarkably, CZ implemented with this operator is still
error-transparent. This is because it still commutes with
σx1A and σx1B (and trivially commutes with all other sin-
gle spin errors) when acting on logical states, though it
does not commute with σx1Aσ

x
1B and can produce a logical

error in that case. However, if tgΓ
2
P /ΓR � 1 this is rare,

and gate error still decreases quadratically in decreasing
ΓP . Performance of this gate is shown in FIG. 1.

The Very Small Logical Qubit: The PBFC has two
important shortcomings: it can only correct a single error
channel and error-transparent gates require continuously
applying three- and four-qubit operators. To overcome
these issues, we will blueprint an ETGS in the Very Small
Logical Qubit architecture [18]. VSLQs protect against
all common error sources to first order, and as we shall
see, an error-transparent entangling gate can be imple-
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mented between them using only two-qubit operations.

A VSLQ consists of a pair of transmon qubit devices,
operated as three level systems, and coupled by a tun-
able, flux driven coupler [29] driven at high frequencies to
coherently drive two- and four-photon transitions. Defin-
ing X̃i ≡ (|0i〉 〈2i|+ |2i〉 〈0i|) and P ji to be the projector
onto states where object i contains exactly j photons,
the rotating frame VSLQ Hamiltonian, in the three level
basis [45] of the left and right qubits l and r is given by:

HP = −WX̃lX̃r +
δ

2

(
P 1
l + P 1

r

)
(5)

The ground states of the VSLQ are the two states sat-
isfying X̃lX̃r = 1. For the simulations in this paper,
we used W = 25 MHz and δ = 300 MHz (both ×2π).
Given the phenomenological noise model for supercon-
ducting qubits of low-frequency phase noise [30–37] and
white noise photon loss trough the al/r operators, when
coupled to additional lossy elements the VSLQ acts as
a logical qubit protected against all single qubit error
channels. Specifically, we introduce two additional lossy
“shadow” qubits or resonators [14, 38], with Hamiltonian

H = HP +HS +HPS , HS = ωS

(
a†SlaSl + a†SraSr

)
,

HPS = Ω (t)
(
a†l a
†
Sl + a†ra

†
Sr + (H.c.)

)
(6)

By careful tuning of the loss rate ΓS and coupling Ω (t)
(the optimal values depend on the primary error rate
ΓP ), photon losses in primary qubits convert to excita-
tions in shadow objects, returning the VSLQ to its parent
logical state. The fast decay rate of the shadow objects
then eliminates these excitations, returning to the rotat-
ing frame ground state and correcting the error. While
phase errors cannot be corrected in the VSLQ, the X̃lX̃r

term introduces an energy penalty which suppresses low-
frequency phase noise [18, 20]. In the Supplemental Ma-
terial of this paper, we quantify this suppression, provide
further details about the signals used in our gate simu-
lations, and describe realistic microwave signal combina-
tions to implement error-transparent VSLQ operators.

Error-transparent gates for a single VSLQ: To
generate an error-transparent single qubit gate set for the
VSLQ, we need to construct two anticommuting “bare”

XL and ZL operators. A natural choice is X
(bare)
L ≡ X̃l

and Z
(bare)
L ≡ Z̃lZ̃r, where Z̃i ≡ P 2

i − P 0
i . These opera-

tors commute withHP and anticommute with each other,
and sequences of partial rotations constructed from them
can implement arbitrary rotations in the logical manifold.

However, these operators are not error-transparent,
since the bare operators X̃i and Z̃i return zero acting
on a |1〉 state. If a photon loss occurs during a gate,
the desired operation will not be continuously applied to
the VSLQ until the photon loss is repaired, leading to a

possible logical error. To remedy this, we define:

XL ≡ X̃l + P 1
l X̃r, ZL ≡ Z̃ ′lZ̃ ′r; (7)(

Z̃ ′i ≡ P 2
i + P 1

i − P 0
i

)
.

Both of these operations can be implemented by adding
additional signals through the VSLQ’s central SQUID;
we shall now prove their error-transparency.

We first consider XL. Consider a photon loss in the r
qubit during the application ofXL as a gate Hamiltonian.
Since there are by default no |1〉 states in the logical
state manifold {|ψL〉}, the P 1

l X̃r term returns zero, and[
X̃l, ar

]
= 0 trivially, so [ar, XL] |ψL〉 = 0. Similarly, if

a photon is lost from the left qubit, X̃l returns zero, but
since X̃lX̃r |ψL〉 = 1, X̃l |ψL〉 = X̃r |ψL〉 and the system
evolves identically under P 1

l X̃r, and [al, XL] |ψL〉 = 0 as
well. Of course, if two or more photons are lost during
the gate operation a logical error will occur, so the gate
error should shrink as nearly TgTR/T

2
1P as T1P grows.

We now consider ZL. Since we assume photon loss
errors but no photon addition, if one of the transmons
is in a |1〉 state it decayed from a |2〉 state in the logi-
cal state manifold. As Z̃ ′ returns 1 on both |1〉 and |2〉,
evolution of a logical state under the operator Z̃ ′lZ̃

′
r is

unchanged by a single photon loss in either qubit. ZL is
thus similarly protected against single photon losses as
XL is. We benchmark these gates against photon loss
in FIG. 2. For simplicity, our simulations restricted the
VSLQ transmons to the three-level basis and assumed
perfect implementation of the error-transparent opera-
tors. The only significant error source in our simulations
was thus random photon loss, as control error is negligi-
ble for the long gate durations considered. Errors due to
the effect of higher levels are small and can be eliminated
by analytical or numerical optimization schemes [39, 40].

An error-transparent two-VSLQ gate: As in the
PBFC, implementing a realistic two-VSLQ entangling
gate based on the error transparent operators (7) is a
subtle challenge. Since XL and ZL are constructed from
two-qubit operations, products of them acting on two
VSLQ copies involve complicated three- and four-qubit
operations. One could engineer these operations using
gadgets as in [41], at the cost of increased complexity
and additional error channels; we avoid this route here.

To generate an error-transparent CZ gate, we imagine
a pair of VSLQs A and B, coupled by flux tunable cou-
plers [9, 42], which are driven off-resonantly to induce po-
tential terms between qubits in A and B. If both VSLQ
copies are in the logical state manifold, the entangling
ZLAZLB operation can be generated perturbatively:

HCZ (t) = g (t)
(
Z̃lAZ̃lB + Z̃rAZ̃rB

)
; (8)

→ −g (t)
2

2W
Z̃lAZ̃lBZ̃rAZ̃rB +O

(
g (t)

4
)
.
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Here, g (t)� W . The second line arises at second order
in perturbation theory, with a factor of 2 from combi-
natorics canceled by the energy cost 4W of transiently
flipping both VSLQ copies into X̃lX̃r = −1 states from
a Z̃lAZ̃lB or Z̃rAZ̃rB term. However, it is only cor-
rect when both VSLQs are in logical states! If a sin-
gle photon is lost in one of the VSLQ copies, the ac-
tion of a Z̃AZ̃B term now only has an energy cost of
2W , as the X̃lX̃r term in HP (5) returns zero on |1〉
states and thus commutes with single Z̃ terms. This sug-
gests that we can achieve error transparency by defining
Z̃ ′′i ≡ P 2

i + 1
2P

1
i − P 0

i and engineering the Hamiltonian

HCZ (t) → g (t)
(
Z̃ ′′lAZ̃

′′
lB + Z̃ ′′rAZ̃

′′
rB

)
(9)

→ −g (t)
2

2W
Z̃ ′lAZ̃

′
lBZ̃

′
rAZ̃

′
rB +O

(
g (t)

4
)
.

This new HCZ will have the same perturbative coefficient
(to O

(
g2
)
) and evolve identically even if a single photon

is lost. The bare Z̃ ′′ matrix element is cut in half when
acting on a |1〉 state, but a |1〉 state only arises from |2〉
state decay (hence the replacement of Z̃ ′′ with Z̃ ′); this
balances the reduced energy denominator of 2W . The
expression (9) is only correct if one or zero photons have
been lost (from any of the four transmons); two losses
produce an error, but at high T1P this is rare, decreasing
gate error nearly quadratically in increasing T1P .

We can benchmark the performance of these gates
numerically. Using relatively un-optimized Gaussian or
Tanh waveforms, we demonstrate super-linear scaling of
gate error, with the error rate for a CZ of 200 or 400
ns total gate time best fit by p (T1P ) = 0.0057/T1P +
0.253/T 2

1P (p = 1.48 × 10−4 at T1P = 64µs) and
0.0064/T1P + 0.380/T 2

1P , respectively. The quadratic
term thus dominates until T1P is large; gate error in ab-
sence of random error processes is ∼ 10−7.

State measurement and conclusions: Adopting
the protocol of Didier et al [43], we can achieve error-
transparent, non-destructive state measurement for su-
perconducting small logical qubits. Specifically, if we
couple an error-transparent gate operator Gi to the dis-

placement of a readout resonator Gi

(
a†R + aR

)
, the res-

onator state will track the eigenvalue of Gi to measure
it directly. Alternatively, one can make multiple simul-
taneous measurements and majority vote; for the PBFC
measuring all three σzi tolerates a single σxi error, and for
the VSLQ directly measuring both X̃l and X̃r tolerates
a single photon loss, since one of the X̃ operators will re-
turn zero but the other will still return the correct value.
Assuming perfect operator implementation, we thus ex-
pect measurement error p ∝ TMTR/T 2

1P , where TM is the
measurement time, an identical quadratic improvement.

We have presented a scheme for mid-gate passive error
correction in small logical qubits, allowing gate opera-
tions to inherit the parent devices’ tolerance to single-
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FIG. 2: (Color online) Gate fidelities for the VSLQ. Top: Sim-
ulated fidelity for single-VSLQ error-transparent gate opera-
tions using the error-transparent operators (7), averaged over
the logical Bloch sphere, with pulsed error correction drives
and gate duration of tg = 200 ns. Here, we plot error rates
for idling (blue, circles), logical X (gold, squares), Z (green,
diamonds) and Hadamard (brown, squares; nearly identical
to ZL error rate). For comparison, we include default error

rates 1−e−Tg/2T1P for gate durations of 20 (purple, triangles)
and 40 (brown, open circles) ns, assuming no control error.
Bottom: fidelity of two-qubit gates, for photon loss rate T1P

between 8 and 64 µs. Here we plot the average error rate
p for error transparent CZ using gate Hamiltonian (9), with
durations of 200 ns (blue, circles) and 400 ns (gold, squares).
For comparison, we plot bare two-qubit CZ gate error from
photon losses for a pair of single transmons 1− e−Tg/T1P for
Tg = 40 ns (green, diamonds), 200 ns (red, triangles), and
400 ns (purple, triangles), with dephasing and control errors
absent.

qubit errors. The simulated performance of these gates
is extremely promising, with two-qubit gate error rates in
the low 10−4 range achievable for experimentally acces-
sible T1. Combined with robust measurement protocols,
we have outlined the essential ingredients required for a
“dissipative subsystem code,” where small logical qubit
copies replace single qubits in a topological code, im-
proving the operation fidelity by an order of magnitude.
However, it is important to caution that leakage (e.g.
short-lived populations of |1l1r〉 or X̃lX̃r = −1 states in
the VSLQ) must be rigorously analyzed before making
quantitative predictions about code performance.
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