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Induced by proteins within the cell membrane or by differential growth, heating, or swelling,
spontaneous curvatures can drastically affect the morphology of thin bodies and induce mechani-
cal instabilities. Yet, the interaction of spontaneous curvature and geometric frustration in curved
shells remains poorly understood. Via a combination of precision experiments on elastomeric spher-
ical shells, simulations, and theory, we show how a spontaneous curvature induces a rotational
symmetry-breaking buckling as well as a snapping instability reminiscent of the Venus fly trap clo-
sure mechanism. The instabilities, and their dependence on geometry, are rationalized by reducing
the spontaneous curvature to an effective mechanical load. This formulation reveals a combined
pressure-like term in the bulk and a torque-like term in the boundary, allowing scaling predictions
for the instabilities that are in excellent agreement with experiments and simulations. Moreover,
the effective pressure analogy suggests a curvature-induced subcritical buckling in closed shells. We
determine the critical buckling curvature via a linear stability analysis that accounts for the combi-
nation of residual membrane and bending stresses. The prominent role of geometry in our findings
suggests the applicability of the results over a wide range of scales.

PACS numbers: 02.40.Yy, 87.17.Pq, 02.40.-k, 87.10.Pq

Owing to their slender geometry, thin elastic shells
display intriguing mechanical instabilities. Perhaps the
most iconic example is the buckling of a spherical shell
under pressure - a catastrophic situation that often leads
to structural failure [1, 2]. Instabilities and shape changes
are also fundamental during the development and mor-
phogenesis of thin tissue [3, 4]. To control and evolve
shape, Nature heavily relies on internal stimuli such as
growth, swelling, or active stresses [5, 6]. If the stimulus
varies through the thickness of the shell, it generally in-
duces a change of the spontaneous (or natural) curvature
of the tissue [7]. Examples are the ventral furrow forma-
tion in Drosophila [8] or the fast closure mechanism in-
voked by the Venus fly trap to catch prey [9]. Harnessing
similar concepts for technological applications, internal
stimuli were also suggested as a means to design adap-
tive metamaterials [10] and soft robotics actuators [11].
To describe the mechanics of slender structures with ar-
bitrary stimuli, classical shell mechanics was extended
recently to model bodies that do not possess a stress-
free configuration [12–14], leading to the non-Euclidean
shell theory [15]. Despite recent progress [16, 17], the
role of curvature-altering stimuli, and their interplay with
geometric frustration and instabilities in thin, initially
curved shells, remains poorly understood.

In this Letter, we combine precision experiments with
non-Euclidean shell theory to reveal how curvature stim-
uli induce mechanical instabilities in spherical shells. Our
experiments demonstrate symmetry-breaking as well as
snap-through shape transitions depending on the amount
of stimulus and the deepness of the shell. To rationalize
our findings, we show that a curvature stimulus reduces
to a pressure-like normal force in the bulk, but induces a
torque along the boundary of the shell. A scaling analy-

sis of the dominant boundary term allows us to construct
an analytical phase diagram that captures well the tran-
sitions found in experiments and simulations. For closed
spherical shells, we show that the pressure-like stimulus
induces a curvature-controlled buckling instability. The
critical stimulus is obtained from stability analysis and
found to be in the range of related biological systems.

In our experiments, we uniformly coated a rigid
sphere (radii R ∈ [12, 75] mm) with silicone-based vinyl-
polysiloxane (VPS) 32 (Zhermack), such that it ther-
mally crosslinks into an elastomeric shell [18]. We then
repeated the coating process with VPS 8, and cut shells
with opening angles θ ∈ [20, 150]◦, resulting in bilayer
shells of thicknesses h ∈ [0.5, 1.3] mm. Due to differ-
ential swelling between the two polymer layers, internal
stresses develop. We quantify this geometric frustration
by cutting a long, narrow strip from the shell. Free of any
constraints, the strip adopts a shape with curvature κ̄,
which can be additively decomposed into the initial cur-
vature −1/R and natural curvature κ. Thus, κ = κ̄+1/R
measures the curvature stimulus (Fig. 1 (a)) [17, 19].
Specifically, for a bilayer with VPS 8 on the outside,
we find κ > 0, and by switching the order of the lay-
ers, we can induce a negative natural curvature (κ < 0).
To characterize the various geometries, we introduce the
dimensionless parameter θ̄ = θ/

√
h/R, describing the

deepness of the shell with respect to the angular width
of the boundary layer

√
h/R [20].

For shells with κ < 0, we find that the stimulus leads
to a loss of rotational symmetry via a supercritical buck-
ling bifurcation (Fig. 1 (c)) [3]. Experiments suggest no
strong dependence of this transition on θ̄. For κ > 0, the
stimulus acts to evert the initial curvature of the shell.
Above a critical stimulus, we observe a snap-through in-
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FIG. 1. (a) Schematic of a VPS bilayer shell with natu-
ral radius of curvature 1/(−1/R + κ) induced by residual
swelling. (b) The natural curvature mechanically corresponds
to torques on the boundary and a pressure field in the bulk.
(c) Buckling of open spherical shells triggered by κ < 0, (left:
experiments; right: simulations). (d) Snapping of open spher-
ical shells triggered by κ > 0 for θ̄ = 5. Scale bars 2 cm.

stability (Fig. 1 (d)), reminiscent of the abrupt concave-
convex shape changes employed by the Venus fly trap [9],
and the embryonic inversion of Volvox [21]. Here, the
critical curvature stimulus increases with θ̄. Moreover,
shallow shells with θ̄ < θ̄s ≈ 2 do not snap, whereas
shells with θ̄ < θ̄c ≈ 4 remain rotationally symmetric af-
ter snapping, while deep ones break the rotational sym-
metry during snap-through (Fig. 2).

To explain the richness of the experimental findings,
we rely on non-Euclidean shell theory that has recently
been proposed as a model for growth in thin, bidimen-
sional bodies [15]. In this formulation, the mechan-
ics of the shell is entirely described by the geometry
of the middle-surface with first and second fundamental
forms a,b [22]. The undeformed reference configuration

in absence of curvature stimulus is characterized by
◦
a,

◦
b,

respectively. Curvature stimuli are modeled by changing
the reference configuration to effectively generate stresses
and moments arising from differential swelling of the shell
layers [23]. The resulting natural configuration has fun-
damental forms ā, b̄ and is generally not embeddable
in Euclidean space. When the stimulus does not in-
duce a stretch of the mid-surface (ā =

◦
a), one obtains

b̄ =
◦
b + κ

◦
a, where κ is the scalar (additive) natural cur-

vature [23]. The energy of the shell may be written after

some algebra as [24]

U = UK

s +
h2

3
UK

b −
2(1 + ν)h2

3

∫
κ tr (b−

◦
b) dω . (1)

Here, UK
= UK

s + h2UK

b /3 is Koiter’s classical shell en-
ergy composed of stretching and bending terms with-
out any inelastic stimuli [24, 25], ν is the Poisson ratio
(ν = 1/2 for VPS), and dω is the area element [26]. Ow-
ing to the additive decomposition, we can interpret the
last term in (1) as the stimulus-induced curvature poten-

tial Pκ = −2(1 + ν)h2/3
∫
κ tr (b −

◦
b) dω. The surpris-

ingly simple additive effect of natural curvature allows
for a relatively straightforward extension of thin shells
simulation methods to minimize (1) for a given stimu-
lus κ. Indeed, by numerically minimizing Eq. (1), we
find good quantitative agreement with the experimental
shapes and the stimulus-induced transitions (Fig. 1 (c,
d)). This suggests that the reduced-order model (1) is
adequate to describe thin shells with curvature stimuli.

To theoretically understand how natural curvature in-
teracts with the geometry and triggers the observed in-
stabilities, we analyze the curvature potential and pro-
vide its geometrical interpretation. We start by expand-

ing tr (b−
◦
b) in terms of the displacement field Ψ up to

first order [20]. Assuming a homogeneous natural curva-
ture stimulus κ, the curvature potential decouples into
bulk and boundary terms, Pκ = −Wbulk − Wedge [24].
For a sphere with outward pointing normal, they read

Wbulk = −4(1 + ν)

3

( h
R

)2
κ

∫
Ψ3 dω , (2a)

Wedge =
2(1 + ν)

3
h2κ

∮ (
q− Ψ̌

R

)
· t ds , (2b)

where Ψ3 is the normal displacement, Ψ̌ is the in-plane
displacement field, and t is the outward normal vector to
the boundary curve. q = ∇Ψ3 − Ψ̌/R represents the ro-
tation of an element of the shell [20], such that q ·t is the
rotation of t (Fig. 1 (b)). The integral in (2a) is equiv-
alent to the first-order energy of a pressure load. In the
bulk, a curvature stimulus is therefore equivalent to an ef-
fective applied pressure. In (2b), κ is the work conjugate
of the rotation q · t and the membrane in-plane displace-
ment Ψ̌ · t, implying both a torque-like and membrane
force-like behavior. Specifically, for κ > 0, Eq. (2b) de-
scribes an outward torque at the boundary (Fig. 1 (b)). A
similar interpretation holds for arbitrary open shells [24].

Numerically, we find that |Wedge| � |Wbulk| for thin
shells of all considered opening angles θ. We can ratio-
nalize this by considering small displacements. The Koi-

ter elastic energy then scales as UK ∼ (Ψ3/R)2R2, while
the curvature potential scales as Pκ ∼ h2κ(Ψ3/R

2)R2

in the bulk. A balance of the two leads to Ψ3 ∼ h2κ.
As the area of the shell is proportional to R2(1− cos θ),
the bulk work (2a) scales as Wbulk ∼ h4κ2(1 − cos θ).
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Then, as the boundary layer is bending dominated [27],
we obtain |q − Ψ̌/R| ∼ κ

√
Rh [24], where

√
Rh is the

characteristic width of the boundary layer [20]. As the
perimeter of the boundary is proportional to R sin θ, we
conclude that the edge work (2b) scales as Wedge ∼
h4κ2(R/h)3/2 sin θ. By a comparison of the two scalings,
we find |Wedge/Wbulk| ∼ (R/h)3/2/ tan(θ/2) � 1, i.e.
the boundary work dominates for the opening angles θ
considered. Therefore, the boundary term dictates the
observed shape transitions.

In experiments, we observe that snapping is indeed ac-
companied by minimal bulk deformation, but large ro-
tation of the boundary. Moreover, we find that snap-
through instabilities occur for open shells with θ ≤ π/2
when their tangent plane on the boundary becomes ap-
proximately horizontal (see the supplementary videos).
In this state, the critical curvature within the boundary
layer scales as bc ∼ (1 + ν)(−1/R + κ) [24]. Since the
width of the boundary layer scales as

√
Rh, bc must also

scale as ∼ θ/
√
Rh. Thus we find that the critical curva-

ture stimulus at snapping κsR ∼ θ̄, that is

κsR = βθ̄ − α , (3)

leaving two scaling coefficients α and β to be determined
later. For θ̄ → 0, shells tend to plates. Flat plates
of radius r under curvature stimuli bifurcate at κ̃ph =

±a(h/r)2 with a =
√

10 + 7
√

2 [17]. Then, for large R
and small θ, but r = Rθ finite, shells are expected to
behave like plates if we identify κ̃pR = κpR − 1, i.e. we
compensate for the initial curvature −1/R. Therefore,
shells will bifurcate at κpR = ±a/θ̄2 + 1, and we ex-
pect a symmetric bifurcation behavior around κR = 1.
Without loss of generality, we consider the case κ < 0,
corresponding to the buckling of shells into spindle-like
shapes. We define the critical curvature stimulus by κb,
and now consider the behavior of deep shells. We note
that for θ → π, the natural curvature will expend a
torque-like work on a boundary whose perimeter ap-
proaches zero as sin θ, while the area of the shell to be
deformed increases as (1−cos θ). The critical natural cur-
vature will then diverge as κbR ∼ tan(θ/2) ∼ 1/(θ − π),
that is 1/(θ̄ − π

√
R/h). We conjecture that the curva-

ture buckling of shells can be determined by combining
the two diverging regimes for small and large θ̄ as

κbR = − a

θ̄2
+ 1 +

b

θ̄ − π
√
R/h

+ c , (4)

where a was given above, and b and c have to be deter-
mined by fitting to simulations. Notice that the superpo-
sition of the two scalings retains the correct asymptotic
behaviors as θ̄ → 0 and θ̄ → π

√
R/h.

Our theoretical scaling predictions can be summarized
in a phase diagram (solid lines in Fig. 2) in the pa-
rameters (θ̄, κR), which fully characterize the curvature-
induced instabilities of open shells. For κ < 0, the scaling
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FIG. 2. Phase diagram of curvature-induced instabilities in
open shells: white and green regions denote phases with ro-
tational symmetry but opposite surface orientations, whereas
blue regions denote phases of broken rotational symmetry.
Theoretical transitions curves (solid lines) match well with
experimental (colored full symbols) and numerical (colored
empty symbols) findings, where color represents h/R.

law (4) with b = 3.6 and c = −0.98 provides the best fit
with numerics, and agrees well with experiments. We
note that a parameter-free determination of the buckling
threshold would require a linear stability analysis, which
is hampered due to the nontrivial fundamental state be-
fore buckling. For κ > 0, the behavior is richer: there
are two phases of inverted curvature, one with broken ro-
tational symmetry (blue region), and another phase that
is rotationally symmetric (green). Simulations confirm
the snapping transition (3) with α = 0.67 and β = 0.85,
but only if θ̄ > θ̄s = 2.09, in agreement with experi-
ments. For θ̄ < θ̄s, we find that shells smoothly invert
their curvature into the green phase as κ increases. This
can be understood by considering a family of shells with
a fixed h/R, and different θ. Since the width of the
boundary layer scales as

√
Rh, shallower shells possess

a boundary layer that covers a larger portion of the area
compared to deeper shells. Thus, there exists a criti-
cal value θ̄s below which the boundary layer transitions
into a wide region that covers the entire shell. As re-
gions within the boundary layer are bending-dominated,
the curvature of the shell smoothly follows the evolu-
tion of the spontaneous curvature for θ̄ < θ̄s. Starting
from the green phase, rotational symmetry is eventu-
ally lost for large κR. The transition line is well de-
scribed by mirroring Eq. (4) around the axis of symme-
try κR = 1, as expected from the plate limit (dashed
gray line), without any changes of the parameters b and c.
At θ̄c, this transition line intersects with Eq. (3), and a
triple point emerges. Explicitly, the triple point is deter-
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mined from −κs + 2/R = κb, which gives θ̄c = 3.85, in
agreement with experiments (θ̄c = 3.95 ± 0.26). Conse-
quently, shells snap into a rotationally symmetric phase
only if θ̄s < θ̄ < θ̄c, whereas for θ̄ > θ̄c, shells imme-
diately snap into an everted state of broken rotational
symmetry (blue region; thin shells are unlikely to snap
into cylindrical shapes [28]. However, we would expect
the deformed shells have a small, nonzero curvature along
one principal direction, corresponding to a near isometric
deformation with minimum energy).

In contrast to open shells, only the bulk contribution
remains for closed shells. Exploiting its analogy with
pressure, we expect instabilities similar to the classical
pressure-induced buckling of spherical shells [25, 29–32].
More precisely, the bulk term is formally equivalent to
the work done by an external (dead) pressure, Wp =
−8(1 − ν2)p/(Eh)

∫
Ψ3 dω [2], allowing us to define an

effective stimulus-induced pressure p via

κh = 6(1− ν)
(R
h

)2 p
E
, (5)

where E is the Young’s modulus of the shell. Follow-
ing this interpretation, a negative stimulus, κ < 0, cor-
responds to a negative external pressure, p < 0, thus
causing an inflation of the shell. Conversely, a posi-
tive stimulus with κ > 0 is equivalent to positive exter-
nal pressure and results in a compression of the sphere.
By expanding the bending and stretching strains up to
the first order in the displacement [20], and solving the
Euler-Lagrange equations associated to (1), we find for
the normal displacement Ψ3/h = −κh/12 + O((h/R)4)
while the in-plane displacement is zero for symmetry.
Having established the analogy to classical shell buck-
ling [33, 34], we expect a critical stimulus beyond which
the shell will buckle in absence of any external load.
It is tempting to identify the buckling natural curva-
ture κb via (5) with the critical buckling pressure pb =
2E/

√
3(1− ν2)(h/R)2 obtained for the classical pressure

buckling of spherical shells [33]. However, despite the for-
mal analogy, pressure buckling and curvature buckling
are triggered by fundamentally different residual stress
states: while the residual stress in pressure-compressed
shells is mainly of the membrane (in-plane) type, the pre-
stress in curvature-compressed shells is a combination of
membrane and bending stresses due to the evolving nat-
ural curvature that modifies the rest lengths of the body
above and below the mid-surface. A careful analysis then
yields the critical buckling stimulus as

κbh = 4

√
3

1− ν
(1 + ν)(5 + 4ν)

, (6)

which for an incompressible material reduces to κbh =
4/
√

7 [24]. This is a large value, corresponding to a radius
of natural curvature equal to two-third’s of the thick-
ness (via residual swelling we are experimentally lim-
ited to values of |κh| < 1/4), yet it is comparable to
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FIG. 3. Curvature buckling of a closed shell. As the stim-
ulus κ/κb increases, the normal displacement at the north
pole Ψ3/h decreases linearly as predicted by theory. At κ =
κb, buckling occurs and the shell becomes unstable. The solid
black line represents theory, while the solid blue and red lines
represent simulations for h/R = 0.001, 0.1, respectively. Ax-
isymmetric profiles and 3D shapes from simulations are shown
in the insets.

natural curvatures observed during the eversion of the
Volvox for which κh ' 2 [21]. In contrast to open shells,
where the characteristic curvature for snapping and buck-
ling is 1/R due to the existence of nearly isometric de-
formations, the characteristic curvature in closed shells
becomes 1/h. To validate the buckling threshold, we
performed simulations to minimize Eq. 1 using closed
spheres for different values of thicknesses and radii such
that h/R ∈ [0.001, 0.1]. Measuring Ψ3/h as we vary κ,
we confirm the behavior of Ψ3/h = −κh/12 before buck-
ling [35], as well as the predicted critical curvature κbh in
Eq. 6 (Fig. 3). We note that after buckling, the shell be-
comes unstable as the bifurcation is subcritical. To track
the lowest-energy unstable branch in Fig. 3, we therefore
minimized Eq. 1 using arc-length continuation while en-
forcing rotational symmetry (solid blue and red lines in
Fig. 3). The post-buckling regime does not vary consid-
erably with h/R and is similar to that observed in the
pressure buckling of shells (insets in Fig. 3) [36].

In summary, we presented a theoretical and experi-
mental study of curvature-induced instabilities in open
and closed shells. Our theoretical analysis reveals that
natural curvature can be interpreted as a combination
of pressure and torque, and enables analytical predic-
tions for instabilities in open and closed shells. We note
that the critical stimuli in open and closed shells could
also be determined via the method for nonlinear deforma-
tions presented in [13], and a formal comparison should
be investigated in future work. We believe our study is
a valuable contribution towards the generic understand-
ing of curvature-driven instabilities in thin curved shells,
as it generalizes previous experiments on plates [17] and



5

elastica with a natural curvature [37]. Due to current
limitations of the coating setup [18], we hope that our
study will motivate experiments on more general sur-
faces, e.g. via the application of advanced 3D printing
techniques [38]. For simple geometries, the presented ex-
perimental setup is extensible to nonhomogenous stimuli
by local patterning of the individual layers. We hypothe-
size that in the bulk, such stimuli remain at lowest order
equivalent to normal forces, simplifying future theoretical
analysis considerably. Lastly, the demonstrated precise
control of shapes by means of natural curvature stim-
uli is scale-invariant, and thus presents novel means to-
wards the design of self-folding and deployable structures
as well as instability-driven actuators in soft robotics ap-
plications across different length scales.
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nancial support from the NSF CMMI–1505125.
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