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Abstract 

The E = 0 octet of bilayer graphene in the filling factor range of -4 < ν < 4 is a fertile 
playground for many-body phenomena, yet a Landau level diagram is missing due to 
strong interactions and competing quantum degrees of freedom. We combine 
measurements and modeling to construct an empirical and quantitative spectrum. The 
single-particle-like diagram incorporates interaction effects effectively and provides a 
unified framework to understand the occupation sequence, gap energies and phase 
transitions observed in the octet. It serves as a new starting point for more sophisticated 
calculations and experiments.       
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Bilayer graphene provides a fascinating platform to explore potentially new 
phenomena in the quantum Hall regime of a two-dimensional electron gas (2DEG). The 
existence of two spins, two valley indices K and K�, and two isospins corresponding to 
the n = 0 and 1 orbital wave functions result in an eight-fold degeneracy of the single-
particle E = 0 Landau level (LL) in a perpendicular magnetic field B [1,2]. This SU (8) 
phase space provides ample opportunities for the emergence of broken-symmetry many-
body ground states [3-15]. The application of a transverse electric field E drives valley 
polarization through their respective occupancy of the two constituent layers [1,2]. 
Coulomb exchange interactions, on the other hand, enhance spin ordering and promote 
isospin doublets [11,15,16]. As a result of these intricate competitions, the E = 0 octet of 
bilayer graphene (filling factor range -4 < ν < 4) exhibits a far richer phase diagram than 
their semiconductor counterparts. Experiments have uncovered 4, 3, 2, 1 coincidence 
points for filing factors ν = 0, ±1, ±2 and ±3 respectively, where the crossing of two LLs 
leads to the closing of the gap and signals the phase transition of the ground state from 
one order to another [13,15-18]. Their appearance provides key information to the 
energetics of the LLs and the nature of the ground states involved. Indeed, coincidence 
studies on semiconducting 2DEGs are used to probe the magnetization of quantum Hall 
states [19] and measure the many-body enhanced spin susceptibility [20]. In bilayer 
graphene, the valley and isospin degrees of freedom increase the number of potential 
many-body coherent ground states. Furthermore, the impact of actively controlling these 
degrees of freedom became evident in the recent observations of fractional and even-
denominator fractional quantum Hall effects in bilayer graphene [17,21-25].  

A good starting point of exploring this rich landscape would be a single-particle, or 
single-particle-like LL diagram, upon which interaction effects can be elucidated 
perturbatively. Indeed, even in the inherently strongly interacting fractional quantum Hall 
effect, effective single-particle models, e.g. the composite fermion model [26], can 
capture the bulk of the interaction effects and provide conceptually simple and elegant 
ways to understand complex many-body phenomena. In bilayer graphene, a LL diagram 
that provides a basis to interpret and reconcile the large amount of experimental findings 
to date has yet to emerge. Predictions of tight-binding models with Hatree-Fock 
approximations [2,14,27-30] are not able to fully account for experimental observations 
[16].  

Here we have taken an empirical approach to construct an effective single-particle-
like LL diagram of bilayer graphene subject to perpendicular magnetic and electric fields. 
This effective LL diagram provides a unified framework to interpret existing experiments. 
It can quantitatively reproduce the observed coincidence conditions of ν = 0 and ±1 and 
account for the widely varying literature reports on the gap energies at ν = ±1, ±2 and ±3. 
The diagram produces five filling sequences of the LLs from ν = -4 to +4, in excellent 
agreement with experiment [16]. An expression for the energy splitting between the n = 
0 and 1 orbitals E10 is obtained. 

All seven devices reported in this letter are dual-gated, with the bilayer sheet 
sandwiched between two h-BN dielectric layers. The fabrication procedures and 
characteristics of the devices can be found in Section 1 of Ref. [31]. The first important 
energy scale of our diagram is the perpendicular displacement field D induced interlayer 
potential difference Δ (D) at B = 0. We determine Δ (D) using thermally activated 
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transport measurements. For D < 800 mV/nm, Δ (D) is well approximated by Δ (meV) = 
0.13D (mV/nm) (See Section 2 of the Ref. [31]).  

When a perpendicular magnetic field B is applied, the gapped bands of bilayer 
graphene evolve into discrete LLs. In a two-band tight-binding model when D is large, 
the ν = 0 gap is Δ (D), which splits the energies of the n = 0 orbitals in K and K� valleys, 
i.e. between |+,0> and |-,0>. The splitting between the n = 1 orbitals, i.e. |+,1> and |-,1>, 
is slightly smaller due to wave function distributions [2]. This model predicts a LL 
sequence of |+,0>, |+,1>, |-,1>, |-,0>. The effect of the electron-hole asymmetry, however, 
produces a large positive correction to the energies of the |±,1> states and modifies the 
sequence to |+,1>, |+,0>, |-,1>, |-,0> [14]. The correction 

)T( 48.0)/()meV( 0410110 BBEEE ==−= γγγ , where γ0, γ1, γ4 are the Slonczewski-
Weiss-McClure hopping parameters [32],  is much larger than the bare Zeeman energy Δz 

(meV) = 0.11 B (T). Thus spin doublets, e.g. |0,↑> followed by |0,↓>, are favored in this 
model [14]. The recent experimental observations of Hunt et al, however, point to the 
formation of closely spaced orbital doublets at large D [16]. Large exchange corrections 
presumably play an important role[16], although the effect of trigonal warping has yet to 
be examined carefully [33]. Beyond tight-binding models, many-body effects are 
expected to modify the LL gap energies with terms linear in B [10,11]. 

Given the prior knowledge, we have constructed an effective single-particle LL 
diagram of bilayer graphene, which is shown in Fig. 1(a). Three energy scales are 
introduced. We postulate that the valley gap Δv (D, B) between the |+,0> and |-,1> states 
takes on the form of Δv (D, B) =Δ (D) + αB and the exchange-enhanced spin gap Δs (B) 
between states of opposite spin polarizations takes on the form of Δs (B) = βB. The 
magnitude and functional form of E10 (D, B), which represents the gaps at ν = ±1 and ±3, 
is to be determined by experiments.  The filling sequence in the large D limit is fixed by 
experiments [16]. The gap at ν = 0 is given by Δ0 ≈ |Δv (D, B) - Δs (B)| and transitions 
from a valley gap at large D to a spin gap at small D, which is generally consistent with 
experimental findings, although the spin polarized ground state of ν = 0 only appears in a 
large in-plane magnetic field [9,11,13]. Along the way, the gap of ν = 0 closes twice, at 
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+ 2E10 (D*
l, B) = (β - α)B [34]. They are distinguishable so long as E10 can be resolved 

experimentally.  

Figures 1(b) - (d) present our measurements of D*
h and D*

l for ν = 0. Figure 1(b) 
shows a colored map of magnetoresistance Rxx as a function of the top and bottom gate 
voltages Vtg and Vbg in device 06 at B = 8.9 T. Lines corresponding to constant filling 
factors ν = 0, ±1 and D = 0 are marked in the plot. We sweep the top and bottom gates in 
a synchronized fashion to follow a line of constant ν and measure Rxx (D). Similar to 
previous studies, a dip (peak) in Rxx (D) is identified as the coincidence field D*

0 (D*
±1) 

for ν = 0 (±1) [13,16-18]. D* is symmetric about 0 and the positive D*
0, ±1 is marked in 

Fig. 1(a). In Fig. (c), we plot a few examples of Rxx (D) at fixed B-fields from 10 - 16 T 
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in device 24. A double-dip structure starts to appear at B ~ 12 T and the difference 
between D*

h and D*
l rapidly increases with B. Higher field data up to 31 T obtained on 

device 06 are shown in Fig. 1(d).  

Figure 2(a) summarizes results of D*, D*
h and D*

l obtained from 4 devices. Above B 
~ 7 T, D*

h (D* at low field) exhibits a remarkably linear dependence on B, with a slope of 
8.3 mV/nm/T. (Considerable deviation of D* from the line is observed at B < 5 T and not 
discussed in this work.) Both the linear trend and the slope are in good agreement with 
measurements obtained by other groups on h-BN encapsulated bilayers [13,16-18]. The 
linear dependence of D*

h (B), together with Δ (D) = 0.13D, leads to β − α = 1.1 meV/T.  

The appearance of D*
l at B > 12 T enables us to determine the magnitude of E10 (D, 

B). Figure 2(b) plots E10 obtained from devices 06 and 24. E10 increases rapidly from 0.2 
meV at D = 96 mV/nm (B = 12 T) to 6.0 meV at D = 167 mV/nm (B = 31 T). The 
coincidence studies alone do not allow us to determine the role of the electric and 
magnetic fields independently in E10. Motivated by the reported linear B-dependence of 
the ν = 1 gap in the literature [22,35-37], we further assume that E10 (D, B)/B is a pure 
function of D and its functional form can then be obtained from data, as shown in Fig. 
2(c). E10/B is a strongly non-linear function of D and only rises sharply after a large 
threshold of D-field is reached. We obtain E10/B = 0.058ሺඥܦሺmV/nmሻ െ 9.43ሻ in the 
regime of D ≥ 96 mV/nm, with the choice of the √ܦ form motivated by the linear fit 
obtained.  

The knowledge of E10 (D, B) sheds considerable light on the widely varying reports 
of the LL gap energies in the literature [15,18,22,35-37]. In Fig. 3(a), we compare the 
systematic measurements of Kou et al. [22] with calculations produced by our effective 
model. In the singly-gated sample used in Ref. [22], the D-field grows with carrier 
density n, which translates into a filling factor-dependent quantity D(ν) = 2.2νB (mV/nm). 
In addition, the sample may have unintentional chemical doping, the compensation of 
which results in a finite D0 at ν = 0. Together, the sample experiences D = D0 + 2.2νB.   
The large band gap of ~ 25 meV at B = 0 observed in Ref. [22] suggests a large D0. As 
shown in Fig. 3(a), with a single fitting parameter of D0 = 220 mV/nm, our calculated 
Δν’s can capture the size and order of the measurements at ν = ±1 and ±3 very well, 
attesting to the strength of our model. Moreover, values of β = 1.7-2.1 meV/T put the 
calculated gaps of ν = ±2 in the vicinity of the measured data. Here, the measurements 
show a larger asymmetry between ν = +2 and −2 than our simulations would suggest. 
One possibility of this discrepancy can be due to the different many-body screening at 
ν = +2 and -2, which requires more sophisticated calculation to capture.  

 An estimated β = 1.7 meV/T, together with β − α = 1.1 meV/T obtained earlier, leads 
to an α = 0.6 meV/T and the quantitative knowledge of all three energy scales Δv (D, B), 
Δs (B) and E10 (D, B) used in our effective LL diagram. We discuss a number of insights 
obtained by examining the diagram in a wide range of D- and B-fields. First of all, it is 
instructive to compare the large-D scenario represented in Fig. 3(a) with that of a small D. 
Figure 3(b) plots the calculated Δν ’s at ν = ±2 and ±3 with D0 = 0 corresponding to no 
unintentional doping. Δ±1 is too small to be calculated accurately. The vanishing gap of 
ν = ±1 and ±3 at small D and the gap-enhancing effect of the D-field, corroborates many 
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experiments in the literature [5,18,22,35,36] and is also supported by our data (See Fig. 
S3 (a) in Ref. [31]).     

 The behavior of ν = ±2 is markedly different. As the insets of Figs. 3(a) and (b) 
illustrate, the nature of the ν = ±2 gap changes from a spin-splitting origin at large D to a 
valley-splitting origin at small D. The transition occurs near D* of ν = 0 (See Fig. 4(a)). 
The magnitude of the gap, however, has slopes of 1.4 and 1.2 meV/T respectively in both 
cases. This transition is thus difficult to detect based on gap measurements alone.  Indeed, 
measurements of Δ±2 in the literature have all reported slopes of 1-1.4 meV/T 
[15,22,35,36], in excellent agreement with the predictions of our model. The large gaps at 
ν = ±2, in both scenarios, result from many-body enhancement and are effectively 
represented in our single-particle diagram.  

Figure 4(a) plots a full diagram of the E = 0 octet, calculated by fixing B = 31 T and 
varying the D-field. Four coincidences are seen. The calculated D*

h and D*
l for the ν = 0 

state are plotted as black dashed lines in Fig. 2(a) and match data well. This is expected 
since we have reverse-engineered our diagram based on these observations. In addition, 
the diagram predicts the closing of the ν = ±1 gaps at D*

±1, the value of which is 
calculated and plotted in Fig. 2(a) as a dark yellow dashed line. Also plotted there are our 
measurements for D*

-1 (blue stars) obtained in device 43 using maps similar to that shown 
in Fig. 1(a), and data points obtained by Hunt et al [16] at B = 31 T (olive stars). The 
calculated D*

±1 is e-h symmetric and captures the average of the measured D*
+1 and D*

-1 
very well. However both our data and that of Ref. [16] systematically deviate from the 
calculated D*

±1, with D*
-1 tending towards D*

l and D*
+1 tending towards D*

h. This 
intrinsic asymmetry between ν = ±1 is schematically illustrated in the inset of Fig. 4(a). 
They point to ν-dependent many-body screening effects missing in model. Similarly, ν-
dependent phase transition lines within each LL [16] is also not captured.  

In our model, E10 vanishes in the vicinity of D ~ 100 mV/nm. A negligible E10 down 
to D = 0 would lead to LLs shown in Fig. 4(a), where ν = ±2 remain valley-split in nature. 
Experimentally, ν = ±2 undergoes another transition at small D-field, possibly to an 
isospin polarized ground state[15], as illustrated in Fig. 4(b). The coincidence field D*

-2 
occurs at ~ 27 mV/nm at 31 T [16] and exhibits a rough slope of ~ 0.9 mV/nm/T at lower 
field [15,17]. The scenario sketched in Fig. 4(b) is consistent with the reported filling 
sequence below D*

-2 [16], and the observations of vanishing Δ±1  and Δ±3 at D = 0 [16,17].  
A more quantitative understanding of this part of the LL diagram would require careful, 
direct measurements of E10 at low D-fields. An accurate knowledge of E10 would also aid 
the understanding and control of even-denominator fractional quantum Hall states in 
bilayer graphene, which so far only occur in the n = 1 orbitals [21,23,24].  

The diagrams shown in Figs. 4(a) and (b) together reproduce the five D-dependent 
filling sequences of the E = 0 octet, which are illustrated above the graphs [16]. The 
agreement is quite remarkable and attests to the validity of the effective single-particle 
approach in capturing many features of the complex many-body system.   

A qualitative failure of our model occurs at ν = 0 in low D-field, where a spin 
ferromagnet is predicted while experiments point to a canted antiferromagnet with spin-
valley coherence [10,11,13]. This single-particle diagram is also likely to fail near 
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crossing points, where quantum Hall ferromagnets coherent in more than one degree of 
freedom may occur [15,37]. We hope that our model provides a skeleton, upon which 
more sophisticated theoretical tools and measurements can be built to illuminate the rich 
quantum Hall physics bilayer graphene has to offer.   

In summary, we constructed an empirical LL diagram for the E = 0 octet of bilayer 
graphene in the presence of perpendicular magnetic and electric fields. This diagram 
offers a unified, intuitive framework to interpret many experimental findings to date, 
complete with quantitative energy scales. We hope that it serves as a good base to launch 
future experiments and calculations.   

 

Figure captions 
FIG.1. (a) An effective LL diagram for the E = 0 octet of bilayer graphene at a fixed 
magnetic field. Red, orange, blue, cyan colors denote |+, 0>, |+, 1>, |-, 0> and |-, 1> states 
respectively, following the color scheme of Ref. [16]. Illustrated are four scenarios 
corresponding to large D, the coincidence fields D*

h and D*
l of ν = 0 and small D. (b) A 

color map of Rxx  (Vtg, Vbg) in device 6 at B = 8.9 T. Dashed lines mark the constant filling 
factors ν = 0, ±1 and D = 0. The arrow points to the positive coincidence fields of ν = 0, 
±1. They are not distinguishable at this field. Disturbance observed in the range of 0 < Vbg 
< 0.4 V is due to contact problems. (c) and (d), Rxx (D) obtained at ν = 0 at selected B-
fields from 10 - 16 T in device 24 (c), and at B = 25 T and 31 T in device 6 (d). The 
dashed lines are guides to the eye for D*

h and D*
l. D* is symmetric about 0. Only one 

direction is shown for each device.  
 
FIG.2. (a) The measured ν = 0 coincidence field D*

h (squares) and D*
l (circles) vs. B in 

devices 24 (red symbols), 06 (black symbols), and 34 (orange symbols). Blue stars plot 
D*

-1 obtained in device 43. Olive stars are data read from Ref. [16] for D*
+1 (upper point) 

and D*
-1 (lower point) at B = 31 T. Black dashed lines plot D*

h = 8.3B (the upper branch) 
and D*

l (the lower branch) obtained from our diagram. The dark yellow dashed line plots 
the predicted D*

±1. The inset plots the blue stars and the dark yellow dashed line again for 
clarity. (b) E10 vs. D*

l. The top axis marks the corresponding B field. (c) E10/B vs. ඥܦכ. 
The blue line represents a linear fit in the form of E10 /B = 0.058ሺඥܦכ െ 9.43ሻ. Symbols 
in (b) and (c) follow the notation of (a).  
 
FIG.3. (a) Measured (Ref.[22]) and calculated (smooth curves) gap energies Δν at ν = ±1, 
±2, and ±3. All calculations use D0 = 220 mV/nm with the field line pointing downwards. 
The solid red and black curves correspond to β = 1.7 meV/T. The dashed red and black 
curves correspond to β = 2.1 meV/T. The measured Δ−2 has a slope of 1.4 meV/T. (b) Δ±2  
and Δ±3 calculated with D0 = 0 and β = 1.7, α = 0.6 meV/T.  Δ±1 is below the limit of our 
calculation. Δ±2 has a slope of 1.2 meV/T. The insets of (a) and (b) illustrate the LL 
sequence corresponding to each scenario respectively.  
 
FIG.4. (a) The effective LL diagram for the E = 0 octet calculated for a fixed B = 31 T 
and as a function of D. The eight states are labeled on the right. Color bars illustrate the 
filling sequences from ν = -4 to 0. The four coincidence fields for ν = 0, ±1 are circled. 
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The inset illustrates the order observed in Ref. [16]. (b) A qualitative sketch of the LL 
diagram at low D-field in the vicinity of ν = -2.  
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E_10 at D=0 appears to be 12meV on this graph. In the text, it

Is given as 0.1B or 3.1 meV at 31T. 
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