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We demonstrate that it is possible to localize photons non-reciprocally in a moving photonic
lattice made by spatiotemporally modulating the atomic response, where the dispersion acquires a
spectral Doppler shift with respect to the probe direction. A static defect placed in such a moving
lattice produces a spatial localization of light in the bandgap with a shifting frequency that depends
on the direction of incident field with respect to the moving lattice. This phenomenon has an impact
not only in photonics but also in broader areas such as condensed matter and acoustics, opening the
doors for designing new devices such as compact isolators, circulators, non-reciprocal traps, sensors,
unidirectional tunable filters, and possibly even a unidirectional laser.

PACS numbers:

Artificial defects embedded in periodic structures are
an important foundation for creating localized modes
and producing localized resonant modes in the gap[1, 2].
Thus such defects are good candidates for designing pho-
tonic crystal lasers[3–6] and they have vast range of ap-
plications such as strain field traps[7], strong photon
localization[8], mode selection[9], and lasers[3–5, 10, 11]
to name a few. While full domination of the wave propa-
gation requires controlling the directionality [12–14], up
to now all the proposed localized modes have been recip-
rocal and restricted by time reversal symmetry.

Consequently, localization is bidirectional and pho-
tons in the forbidden stop band are confined irrespec-
tive of the direction of the incident beam. Furthermore,
while in photonic crystals modulation occurs in the real
part of the refractive index, recently parity-time sym-
metric systems have been proposed where the imagi-
nary part of the index is periodically altered. Asym-
metric reflections in 1D parity-time symmetric structures
have been proposed as a method for creating unidirec-
tional, yet reciprocal, transports such as unidirectional
invisibility[15], unidirectional lasing[16, 17] and unidirec-
tional anti-laser[18]. However, in all the aforementioned
phenomena in the absence of the magnetic effect, in Her-
mitian and non-Hermitian systems, the band structure
is symmetric and any non-reciprocal light propagation
is prohibited. Specifically, lattices with time symme-
try or more precisely any symmetry that changes the
wavevector k to −k do not support asymmetric band
structure[19]. Consequently, the transmitted field in such
lattices is symmetric and independent of the input chan-
nel. Nevertheless, in recent years there is a demand for
non-reciprocal transport, especially in miniaturized and
compact systems[20–23].

Magnetic biasing, for example in Faraday isolators, is
the most common technique to break the reciprocity[24,
25]. In a similar fashion, a periodic stack of anisotropic
dielectrics and gyrotropic magnetic layers results in
asymmetric band structures[13, 19, 20]. More recently,
one-way frequency conversion in waveguides has been

proposed by means of spatiotemporally modulated in-
dex of refraction[12] which results in magnetic-free non-
reciprocal optical [21, 22], acoustic[26, 27], and radio-
frequency[28] transport where a temporal potential imi-
tates a magnetic field responsible for non-reciprocity[29–
31].

Here we propose a non-reciprocal localized defect mode
at a specific frequency. Specifically, the non-reciprocal
trapping of light results in the unidirectional exponential
accumulation of photons traveling in only one direction.
For a finite system, such localized modes result in non-
zero transmission in the bandgap. In the opposite direc-
tion and at the same frequency, photons end up in the
bandgap and thus their propagation is forbidden. For a
reasonably strong modulation we show that one can ob-
tain an interesting situation, wherein one direction pho-
tons get trapped, namely localized, while in the opposite
direction and at the same frequency the photons are in
the passband with scattering mode feature. Particularly
in a scattering mode, unlike the localized mode, the field
does not have exponential form. Finally, we show the fre-
quency shift of the defect mode is linearly proportional
to the detuning similar to the Zeeman effect. The non-
reciprocal defect mode can filter the unwanted frequen-
cies in the bandgap and transmit the defect mode signal.
By changing the detuning one can tune the filtering fre-
quency in a nonreciprocal manner.

To realize a non-reciprocal localized mode, as schemat-
ically depicted in Fig. (1), we embed a defect in a pe-
riodic spatiotemporally modulated 1D lattice. Although
our proposal is general and can be implemented in differ-
ent wave-base systems, we consider a periodic photonic
lattice generated in a three-level electromagnetically-
induced-transparency (EIT) medium. The three-level
system we consider (see the left inset of Fig.1), has a
typical Λ-configuration with upper level |a〉 (P3/2, F =
1) and two lower-levels |b〉 (S1/2, F = 1) and |c〉
(S1/2, F = 2), where |a〉 ↔ |b〉 and |a〉 ↔ |c〉 are al-
lowed dipole transitions while transition |c〉 ↔ |b〉 is
forbidden due to parity selection rule. The coupling
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fields Ec(t) = ŷ
2

{

E1e
i(k1·r−ω1t) + E2e

i(k2·r−ω2t) + c.c
}

drive the transition |a〉 ↔ |c〉 with atomic transi-
tion frequency ωac. The weak probe field Ep(t) =
ŷ
2

{

Ef (z, t)e
i(kf ·r−ωf t) + Eb(z, t)e

i(kb·r−ωbt) + c.c
}

excites
the transition, |a〉 ↔ |b〉 with atomic transition frequency
ωab. In the limit of E1,2 ≫ Eb,f , we can approximately as-
sume all the populations reside in level |b〉 and we obtain
the equations of motion for the coherences ρij

dρab
dt

= −Γabρab + i
[

Ωfe
ikf ·r +Ωbe

ikb·rei∆t
]

e−iωf t+

i
[

Ω1e
ik1·r +Ω2e

ik2·re−iδt
]

e−iω1tρcb

dρcb
dt

= −Γcbρcb + i
[

Ω∗
1e

−ik1·r +Ω∗
2e

−ik2·reiδt
]

eiω1tρab

(1)

Above, the Rabi-frequencies are Ω1,2 = (℘ac · ŷ/2)E1,2,
Ωb,f = (℘ab · ŷ/2)Eb,f , the detunings are δ = (ω2 − ω1),
∆ = (ωf − ωb) and the decay of optical coherences are
Γab = (iωab + γab), Γcb = (iωcb + γcb). We seek solu-

tions of the form ρij =
∑

n σ
[n]
ij exp

[

i(∆k
[n]
ij · r− ω

[n]
ij t)

]

where ∆k
[n]
ij is the nth order wavevector mismatch. Con-

sidering that the counter-propagating coupling fields and
the forward probe field are along the z-direction, the re-
flected field will be generated in the backward direction
via phase-matching condition ∆ = −δ and its frequency
(for left incident beam, namely toward +z) is ωb = ωf+δ.
From the solution of Eq. (1) one can obtain the zeroth-

order and the first-order terms of the coherence as σ
[0]
ab =

uA0+vÃ1, and σ
[1]
ab = u

′

A0+v
′

Ã1 where the coefficients

are defined as u =
[

α0 −
(

γ1β0

α1−β1ζ2

)

−
(

γ0β−1

α−1−γ−1ξ2

)]−1

,

v =
(

β0

α1−β1ζ2

)

u, u
′

= γ1u
α1−β1ζ2

, v
′

= 1+γ1v
α1−β1ζ2

and αn =

1 − BnDn − CnEn−1, βn = BnEn, γn = CnDn−1, ζn =

σ
[n]
ab /σ

[n−1]
ab (for n 6= 0,1), ξn = σ

[−n]
ab /σ

[−(n−1)]
ab (for n 6=

0,1). Moreover, the coefficients that quantify the atomic

parameters are defined as An =
iΩf

−i∆f+γab−inδ , Ãn =

iΩbe
−i∆kz

−i∆f+γab−inδ , En =
iΩ∗

2

−i∆f+γcb−inδ , Bn = iΩ1

−i∆f+γab−inδ ,

Cn = iΩ2

−i∆f+γab−inδ , Dn =
iΩ∗

1

−i∆f+γcb−inδ . Here we have

defined the detunings as ∆f,b ≡ ωf,b − ωab. Propagation
of the probe field is given by the Maxwell’s wave equation

∂2Ep

∂z2
−

1

c2
∂2Ep

∂t2
= µ0

∂2P

∂t2
(2)

where the polarization in the EIT medium and the defect
takes the form P = N℘baρab(z, t)+c.c and P = 0, respec-
tively. As noted earlier, only the zeroth-order and the
first-order terms are dominant in the coherence term ρab.
Subsequently, within slowly varying envelope approxima-
tion, Eq.(2) yields (in steady-state) the Schrödinger-like
coupled mode equation for the weak forward and back-
ward traveling fields generated by the probe in the spa-

tiotemporal modulated medium

i
d

dz
~ψ =

(

κ11(ωf ) κ12(ωb)e
−i∆kz

κ21(ωf )e
i∆kz κ22(ωb)

)

~ψ (3)

where ~ψ =
(

Ωf Ωb

)T
. The off-diagonal terms in the

2 × 2 matrix mix the waves while the diagonal ones
are attenuation coefficients associated with the probe
field with frequency ωf propagating in the z direction,

namely κ21(12) = (−)θb(f)

(

u
′

(v)
γab−i∆f(b)

)

, and κ22(11) =

(−)θb(f)

(

v
′

(u)
γab−i∆b(f)

)

where θf,b =
N |℘ab|

2kf,b

2~ǫ0
. Notice

that the field propagation in a time-dependent spatially
modulated waveguide system is described by a similar
equation [12]. Below, we assume the EIT medium is com-
posed of cold rubidium atoms distributed homogeneously
in a cell of about 2mm length which has two parts sepa-
rated by a SiN dielectric membrane (defect) with 88.6nm
length and refractive index n = 2.2 + 10−4i.
Solving differential equations (2) and (3) simultane-

ously and using the transfer matrix method we can cal-
culate the transmission (T ) and reflection (R) from our
moving photonic crystal. Figure (2a) depicts the trans-
mission and reflection coefficients vs. probe detuning ∆f

in the presence of the membrane and the detuning δ (nor-
malized with respect to decoherence rate between levels
|a〉 ↔ |b〉; γab) and with ωab ≈ 2414191.334 GHz. In
the absence of the membrane, the spatial periodicity of
the dielectric constant of the photonic crystal generates
a Bragg reflection where photon propagation is forbid-
den in a window known as the bandgap. Thus, in the
bandgap the transmission coefficient drops to zero. Con-
sidering the intrinsic losses in the system at the photonic
bandgap the reflection plus absorption sum to one. As
depicted in Fig.(2a) by inserting the membrane into the
cell, a defect mode with non-zero transmission appears
in the bandgap at ∆f ≈ −0.12MHz. We highlighted the
position of this mode with an arrow. Such a defect mode
is a bound state out of continuum and is created due to
the resonances.
The transmission peak of the defect mode is recipro-

cal and degenerate, namely, irrespective of the direction
of the incident field the transmission peak occurs at the
same frequency. When we introduce a nonzero detun-
ing, i.e. the permittivity of the photonic lattice becomes
both space- and time-dependent, degeneracy breaks and
the frequency of the defect mode associated with the left
and right incident beams becomes different. Neglecting
the higher quasi energies, we plotted left incident trans-
mission and reflection in the figure (2b) for δ = 0.015γab.
In this case, the defect mode appears at the probe detun-
ing ∆f ≈ −0.37MHz (see the green dash line). On the
other hand, in figure (2c) we observe that for the right in-
cident field the defect mode appears at ∆f ≈ −0.28MHz
(orange dash line).
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The transmission and reflection peaks at the defect
mode have a sharp feature in the absence of the losses. At
the defect state, photons are trapped and the electric field
is localized around the membrane. Specifically, the elec-
tric field envelope decays exponentially as we move away
from the defect. This contrasts with the resonant peaks
at the scattering states where the field is distributed all
over the photonic crystal. In our photonic lattice a com-
parison between Fig.(2a) and Fig. (2b,c) shows that due
to the time-dependent modulation position and width of
the bandgap window vary when the detuning is chenged
and at the same time it affects the position of the lo-
calized modes. To distinguish the localized mode from
the scattering modes one should plot the field distribu-
tion for the localized mode. As long as the field has an
exponential form we have the trapping of photons. How-
ever, eventually for very strong detuning, the mode will
completely merge with the band and its associated field
distribution will not have an exponential shape. Specifi-
cally, one can use detuning to tune the mode from being
completely localized to a non-localized one. In figures
(3a-i) we plotted the field distribution in the photonic
crystal for different detuning and at different probe de-
tuning. Specifically, in Figs.(3a-c) we plotted the field
at ∆f = −0.1179MHz (localized mode with exponen-
tial form), ∆f = −0.2162MHz (scattering mode), and
∆f = −0.5MHz (a mode in the bandgap) for δ = 0. We
clearly observe the difference in the field distribution in
each case. To compare the field distribution for non-zero
detuning we plotted the field for the left and right in-
cident beams at ∆f = −0.389MHz, ∆f = −0.282MHz,
and ∆f = −0.155MHz for δ = 0.015γab in Figs.(3d-f) and
Figs.(3g-i), respectively. In all cases for the defect mode,
the exponential decay around the membrane is clearly
observed. It is interesting that for ∆f = −0.389MHz
the photons coming from the left side will be localized
while for the same photons coming from the right they
will be in the bandgap and get reflected. However, for
∆f = −0.282MHz the photons coming from the right
will be localized and photons with the same frequency
coming from the left side will be in the band and form a
scattering mode with finite transmission and reflection.

As discussed previously the nonzero detuning between
the counterpropagating fields splits the defect modes as-
sociated with the left and right incident beams. The
splitting is linear with respect to the detuning similar to
the Zeeman effect where a magnetic field splits the de-
generate modes. This similarity between time-dependent
potentials and the magnetic field is the basic principle be-
hind the breaking of the Lorentz reciprocity. However, to
the best of our knowledge there is no report on the exis-
tence of non-reciprocal localized mode based on magnetic
effects. We mentioned earlier that the frequency of the
localized mode is linearly dependent on the detuning. In
Figure (4) we numerically calculated the changes in the
frequency of the localized modes for the left and right in-

cident fields versus the detuning. A linear fitting shows
that our anticipation is correct and it behaves linearly
similar to the Zeeman effect.

Any type of isolator based on magnetic field or time-
dependent modulation needs an absorbing and/or filter-
ing channel to remove the undesired signal. Otherwise,
in the absence of the filtering channel, the undesired field
will be able to pass through the isolator after several for-
ward and backward propagations. Our proposal is not
distinct in this sense. However, in our case, the undesired
signal is in the gap and needs to travel several times to
be able to pass through our proposed isolator. For ex-
ample, let us consider the case represented in Fig.(2b,c)
and assume that we lunch a signal from the left with
frequency associated with the defect mode, namely at
∆f = −0.38. Thus, the left incident signal can pass the
lattice. On the other hand if a similar signal comes from
the right, it will not pass the lattice and gets reflected
at the frequency ωb = ωf − δ. This process will continue

n(=
|∆passband before the gap

f
−∆defect

f |

δ ≈ |−0.9+0.39|
0.09 ≈ 5) times

until the frequency of the reflected signal decreases to the
value which belongs to the passband frequency just be-
fore the bandgap. We mentioned earlier that naturally,
there are some intrinsic distributed losses in our optical
system. Consequently, the undesired signal coming from
the right side observes the intrinsic losses n times more.
Thus, our proposal is more compact with respect to the
other isolators.

In conclusion, we have shown that by embedding a de-
fect in spatiotemporally periodic modulated photonic lat-
tice one can achieve a non-reciprocal defect mode where
the photons propagating in one direction become local-
ized and get trapped in the bandgap, while in the op-
posite direction photons with the same frequency get re-
flected or transmitted depending on the position of the
mode in the bandgap window. This contrasts with the
periodic spatial modulated case where a defect generates
a reciprocal defect mode. Moreover, we showed that the
position of the defect mode is tunable and depends on
the strength of the temporal modulation. Specifically,
the position of the defect mode linearly changes with
respect to the temporal modulation. Our proposal can
have application in designing compact isolators, circula-
tors, unidirectional sensors and filters. Of great inter-
est will be extending non-reciprocal localized mode to
non-Hermitian defects such as a gain or loss medium em-
bedded in the lattice which might lead to unidirectional
lasing or absorption.
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Figures

FIG. 1: (Color online) Schematic of a spatiotemporally mod-
ulated photonic crystal with a static defect membrane at the
center of the crystal. The right inset schematically shows re-
flection (R) and the place of localized mode for two different
cases: (upper) no time modulation where the localized mode
is reciprocal, (middle and lower) spatiotemporal modulation
where the position of localized mode depends on the direction
of the incident beam. The photonic crystal is formed (see the
left inset) from a driven Rb atom-cell (Γ-type three-level sys-
tem) with a standing wave field with detuning δ between the
two components.

FIG. 2: (Color online) (a) Transmission (red) and reflection
(blue) for the static and reciprocal photonic crystal (δ = 0)
with a defect in the middle of the lattice. The defect mode
appears at the ∆f ≈ −0.13MHz. (b,c) Left and right trans-
mission and reflection for the space and time-modulated pho-
tonic crystal (δ = 0.015γab) with the defect in the middle
of it. For the left (right) incident, b (c), the defect mode
is appeared at the ∆f ≈ −0.38(−0.29)MHz (see the insets),
highlighted with a dash green (orange) line. The position of
the dash line, shows that the frequency for which we have
the defect mode for left (right) incident beam, the right (left)
incident beam observes the bandgap (bandpass) and has zero
(finite) transmission. The atomic parameters are γab = γac =
6×106s−1,Ω1 = 30×106s−1,Ω2 = 25×106s−1, N = 1919m−3.

FIG. 3: (Color online). (a-c) Distribution of the field inten-
sity for the zero detuning (a) at the defect mode, (b) in the
passband window, and (c) in the gap. (d-f) Distribution of
the field intensity for left incident beam when δ = 0.015γab
(d) at the defect mode ∆f ≈ −0.38MHz, (e) in the passband
window ∆f ≈ −0.29MHz, and (f) at ∆f ≈ −0.155MHz. (g-i)
Distribution of the field intensity for the right incident beam
when δ = 0.015γab (g) at the gap ∆f ≈ −0.38MHz, (h) at
the defect mode ∆f ≈ −0.29MHz, and (i) at passband with
∆f ≈ −0.155MHz. Notice that the defect mode of the left in-
cident beam is located at the gap for the right incident beam
while the defect mode of the right incident beam is located at
the passband and has a scattering feature.

FIG. 4: (Color online) Position of the defect mode vs. the de-
tuning for the left (squares) and right incident (circles) beams.
A Linear fit is depicted by a continuous line on top of the
symbols. The splitting of the position of the modes shows
a linear behavior similar to the Zeeman effect, showing the
similarities between time-dependent modulated lattice and a
magnetic biasing.










