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Microwave squeezing represents the ultimate sensitivity frontier for superconducting qubit mea-
surement. However, measurement enhancement has remained elusive, in part because integration
with standard dispersive readout pollutes the signal channel with antisqueezed noise. Here we induce
a stroboscopic light-matter coupling with superior squeezing compatibility, and observe an increase
in the final signal-to-noise ratio of 24%. Squeezing the orthogonal phase slows measurement induced
dephasing by a factor of 1.8. This scheme provides a means to the practical application of squeezing
for qubit measurement.

Electromagnetic quadrature squeezing is the reduction
below vacuum noise of fluctuations in, for example, either
the sin(ωt) or cos(ωt) component of the electric field. Be-
sides being of fundamental interest as nonclassical states
of light, squeezed states can enable faster measurements
in cases where field intensity is limited, utilizing multi-
particle quantum correlations to encode more informa-
tion per photon, which manifests as a reduction in noise.
Optimally applied squeezing can result in Heisenberg-
limited scaling, wherein the signal-to-noise power ratio
(SNR) scales not as the number of measurement pho-
tons but as the square. The development of squeezing
at optical frequencies has a long history [1] leading to a
range of recent applications such as gravitational wave
detection [2, 3]. Squeezing of microwave-frequency fields
using superconducting amplifiers [4–6] has surged as a
topic of interest in the modern contexts of circuit quan-
tum electrodynamics and dark matter detection [7] given
the ability to couple squeezed fields to low-dimensional
quantum systems such as superconducting qubits [8–10],
optomechanical circuits [11, 12], or spin ensembles [13].

Despite interest in using squeezed microwaves for su-
perconducting qubit measurement, experimental realiza-
tion has remained elusive. A major challenge is that
the dispersive coupling central to standard readout tech-
niques rotates squeezing out of, and antisqueezing into,
the signal quadrature, limiting SNR improvement out-
side of certain restrictive parameter regimes [14]. Pro-
posals to fully exploit squeezing for qubit measurement
have been suggested, however with the need for more
complex circuit architectures involving multiple readout
modes [15, 16] or a fundamentally different longitudinal
qubit-cavity coupling [17]. In this Letter, we employ a
stroboscopic longitudinal coupling [18] compatible with
large amounts of squeezing and standard qubit designs to
harness input squeezing for qubit measurement. Strobo-
scopic techniques have been intensely studied in “backac-
tion evading” optomechanical systems [19–21], but have
not been combined with injected squeezing.

Stroboscopic measurement occurs within a rotating
frame in which the terms which limit the benefit of
squeezing for conventional dispersive readout are sup-
pressed. The scheme consists of a qubit Rabi-oscillating
at frequency ΩR coupled to a cavity driven by sideband
tones at ωc±ΩR. The interaction-picture Hamiltonian is
ĤI = χσ̂za

†a+ ΩR

2 σ̂x+Ĥsb, where Ĥsb describes the side-
band drives. Decomposing the resulting cavity field into
its classical and quantum parts, â → 2ā0 cos(ΩRt) + d̂,
and transforming to the Rabi-driven qubit frame yields

ĤR = χā0σ̂
R
z (d̂+ d̂†) + (eiΩRtÂ+ ei2ΩRtB̂ + H.c.). (1)

The first term of Eq. (1) describes a resonant longi-
tudinal and quantum non-demolition (QND) coupling
between the qubit and one quadrature of the cavity
field. The measured qubit observable σ̂R

z has an ex-
plicit time-dependence in the original interaction pic-
ture, σ̂R

z → cos(ΩRt)σ̂z − sin(ΩRt)σ̂y, making it anal-
ogous to a quadrature operator of a harmonic oscilla-
tor. The remaining terms in Eq. (1), discussed explicitly
in the supplemental material (SM) [22], represent devia-
tions from the ideal QND coupling, including terms that
would cause an unwanted rotation of any input squeez-
ing. These deleterious terms are rapidly oscillating, and
hence are strongly suppressed if ΩR � κ, χ. In contrast,
there is no such suppression in a standard dispersive mea-
surement, as such effects are resonant.

To combine squeezing and stroboscopic measurement
experimentally, we embed a 3D-transmon qubit [25] in a
series configuration of two Josephson parametric ampli-
fiers (JPAs) squeezing independent phase-space quadra-
tures (Fig. 1(a)). Several recent experiments not involv-
ing superconducting qubits have utilized similar configu-
rations of superconducting amplifiers [13, 26, 27], which
have been predicted to exhibit Heisenberg-like scaling in
some regimes [28]. The qubit (ωq/2π = 3.898 GHz) is
coupled to a two-port superconducting waveguide cav-
ity (ωc/2π = 6.694 GHz) with a dispersive interaction
strength χ/2π = 0.73 MHz.
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FIG. 1. (a) Simplified experimental setup. A first Josephson parametric amplifier (SQZ) injects squeezed vacuum into a
superconducting cavity containing a qubit. The qubit is Rabi-driven at ΩR about σ̂x and measured by two tones at frequencies
ωc ± ΩR, resulting in a qubit-state dependent displacement of the squeezed field in phase space. A second Josephson para-
metric amplifier (AMP) followed by a Josephson traveling wave parametric amplifier (JTWPA) perform phase-sensitive and
phase-preserving amplification, respectively, of the output signal. Insets show phase-space representations of an ideal lossless
measurement with (solid) and without (shaded) squeezing. (b) We choose the two tones’ relative phase φs such that the
envelope of the resulting measurement field is in phase with σ̂z. (c) Whereas dispersive readout rotates the output field in
phase-space, stroboscopic readout displaces the output field, providing greater potential for enhancement by squeezing.

Into the weakly coupled port (κweak/2π ≤ κint/2π ∼
10 kHz), we inject coherent qubit and cavity drives to
generate stroboscopic measurement. The drive reso-
nant with the qubit induces Rabi oscillations about σ̂x
at ΩR/2π = 40 MHz exhibiting characteristic lifetimes
TRabi ∼ 20− 30 µs. Concurrently, a pair of cavity drives
at frequencies ωc ±ΩR, equivalent to a drive at ωc mod-
ulated at 2ΩR, stroboscopically probes the qubit state.
Varying the relative phase of these two tones varies the
timing of the modulation relative to the Rabi oscillations
such that we can choose to measure any combination of
σ̂R
y and σ̂R

z (Fig. 1(b)); for all measurements presented

here we choose to measure σ̂R
z , equivalent to a σ̂z mea-

surement in the absence of a Rabi drive (ΩR → 0). The
measurement interaction (Eq. (1)) displaces the cavity
output field in phase-space by ±2ā0χ/κ [18, 22], in con-
trast to dispersive measurements which rotate the output
field through the angle ± arctan(2χ/κ) or twice this angle
for reflection measurements (Fig. 1(c)). For all measure-
ments shown below we choose ā0 = 0.35 corresponding
to a mean photon number of 0.5 in the coherent part of
the cavity field.

Into the strongly coupled cavity port (κstrong/2π = 5.9
MHz), we inject squeezed vacuum at ωc produced by the
first JPA, labeled SQZ in Fig. 1(a). Keeping κstrong �
κweak ensures that unsqueezed vacuum fluctuations in-
cident to the weakly coupled port can be neglected and
do not spoil the intracavity squeezing. We deliberately
designed the squeezer to have a bandwidth smaller than
ΩR (κSQZ/2π = 26 MHz when the amplifier is off) to
avoid generating significant squeezed noise power at the
frequencies of the two measurement tones, similar to
narrow-band squeezers used in previous works [9]. We
use a vector network analyzer to separately measure the

phase-preserving squeezer gain, GSQZ, from which we
infer the amount of squeezing generated at this JPA.
The resulting intracavity squeezed state is displaced in
phase space from the origin along the I quadrature by
the stroboscopic measurement interaction (Fig. 1(a)); we
can freely adjust the squeezer pump phase to orient the
squeezing angle Φ in phase-space parallel (Φ = 0) or per-
pendicular (Φ = π/2) to this signal.

In order for squeezing of vacuum fluctuations to have
a significant effect on the SNR achieved at room tem-
perature, the signal must be amplified with high ef-
ficiency. The signal travels from the cavity via the
strongly-coupled port to a series of two superconduct-
ing amplifiers: a second JPA, labeled AMP in Fig. 1(a),
followed by a Josephson traveling wave parametric ampli-
fier (JTWPA). The JTWPA functions as a high dynamic
range amplifier (P−1dB ∼ -100 dBm at 20 dB gain) that
lowers the noise temperature of the measurement chain,
referred to the JTWPA input, to be less than 1 K [29].
This permits operating the second JPA at modest gain
less than 20 dB such that nonlinearities do not degrade
the efficiency of the phase sensitive amplification [13, 30].

This hardware configuration enables control via
squeezing of the speed at which the cavity field acquires
information about the qubit, which is reflected in the
rate of measurement backaction. With the signal in the
field quadrature I, backaction is exerted on the qubit
by fluctuations of the conjugate variable Q. When no
squeezing is applied, these fluctuations are those of the
electromagnetic vacuum, which has a variance of 1/4 in
all phase-space directions, and the resulting dephasing
rate is given by Γϕ = 8ā2

0χ
2/κ [18]. The observed de-

cay of a Ramsey oscillation occurring during a measure-
ment of a chosen strength indicates a steady-state de-
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phasing rate Γϕ = 0.54(1) µs−1 (Fig. 2(a)). We compare
to this baseline the Γϕ seen when fluctuations in the mea-
surement field are squeezed. Changing the amplitude of
the JPA pump controls the amount of squeezing, while
changing the pump phase rotates the squeezing relative
to I and Q. With the pump amplitude fixed such that
GSQZ = 3.8 dB, squeezing along the backaction quadra-
ture Q (Φ = π/2) slows down Γϕ by a factor of 1.8,
indicating 2.5 dB of squeezing inside the cavity, and also
amplifies fluctuations in the signal quadrature I, reduc-
ing the rate at which qubit state information leaves the
cavity. The ability to slow a qubit measurement with
squeezing is desirable in circumstances where a measure-
ment occurs as an unwanted side-effect of a quantum
operation, and has been proposed as a tool for realizing
high-fidelity multi-qubit gates [31]. Conversely, squeez-
ing along I (Φ = 0) increases Γϕ by a factor of 3.9 (5.9
dB) and increases the output field SNR. We model the
dephasing rate as

Γϕ = Γϕ,vac

∆2
Q

1/4
= Γϕ,vac(1 + 2εin(N +M cos 2Φ)), (2)

where ∆2
Q is the field variance in the Q quadrature inside

the cavity, 1 − εin is the loss between the squeezer and
qubit, and the squeezing parameters N and M [32] are
defined such that the variance of the amplified (squeezed)
quadrature is (1/2 + N ±M)/2 at the squeezer output.
We measure loss in the JPA and calculate a negligible
effect on squeezing, so we model the JPA as producing
an ideal squeezed state with M =

√
N(N + 1) and N =

GSQZ − 1 both fixed by measurements of GSQZ. A fit
to the dephasing times shown in Fig. 2(b), jointly fit
with the corresponding measurement times as discussed
below, determines the input efficiency εin = 0.48.

For a given squeezer setting, the squeezing-induced in-
crease (decrease) in Γϕ should correspond to an increase
(decrease) in the SNR at our room-temperature homo-
dyne detection setup. As in the dephasing rate study,
we begin by determining a baseline with the squeezer off.
We repeatedly prepare the qubit in either the ground
or excited state and generate histograms of the results
of stroboscopic measurements, indicated by circles in
Fig. 3(a). We calculate the SNR = (2(V̄e−V̄g)/(σe+σg))2

from the mean separation and widths of the histogram
distributions. For a given Γϕ,vac produced by an un-
squeezed steady-state measurement field at the qubit,
SNR = 8Γϕ,vacTintεout, where Tint is the integration time
and εout is the efficiency of the measurement chain down-
stream of the qubit. From the slope of SNR vs Tint we
infer the steady-state measurement rate Γmeas,vac and the
output efficiency εout = Γmeas,vac/2Γϕ,vac = 0.38.

We repeat these measurements while squeezing or an-
tisqueezing the noise in the signal quadrature, produc-
ing the histograms respectively indicated by stars and
squares in Fig. 3(a). With GSQZ = 4.0 dB, we ob-
serve narrowed histograms with reduced overlap area;

Tφ (μs)ФGSQZ

3.8 dB �/2 3.27(5)
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FIG. 2. (a) Ensemble-averaged Ramsey decay traces during
a stroboscopic σ̂z measurement with no squeezing (brown)
or with squeezing in phase (purple) or out of phase (cyan)
with the measurement signal. Each trace is normalized by its
initial t = 0 value, σx,0. Here the squeezer is pumped for 3.8
dB of phase-preserving gain as determined by Lorentzian fits
of S21 vs probe frequency. (b) Steady-state dephasing rates
Γϕ = 1/Tϕ were acquired via Ramsey measurements as in
(a) repeated for a range of phases and squeezer gains. The
orange horizontal band is the dephasing rate with the squeezer
off. Error bars, including the width of the horizontal band,
represent statistical fit uncertainties. The dashed curves are
the results of a joint fit of all data in Figs. 2(b) and 3(b).

from the slope of SNR(t) we determine a 24% increase
in Γmeas from 0.41(1) without squeezing to 0.51(1) µs−1

with squeezing. A separate set of measurements display
the dependence of Γmeas on squeezing amount and phase,
as shown in Fig. 3(b). As the SNR and thus Γmeas should
vary inversely with variance ∆2

I at the end of the mea-
surement chain, we fit the data with the expression

Γmeas = Γmeas,vac
1/4

∆2
I

=Γmeas,vac(1 + 2εinεout(N −M cos 2Φ̃))−1.

(3)

The free parameters in the joint fit of Γϕ and Γmeas are

εin = 0.48, a global phase, and an offset δ = Φ− Φ̃ = 14◦

capturing imperfect alignment of AMP with the signal
quadrature, which shifts Γmeas(Φ) but not Γϕ(Φ). We
fix Γϕ,vac, Γmeas,vac, and εout at the values found with
no squeezing. As expected, Γmeas(Φ) is π-periodic, with
phases maximizing Γmeas close to those maximizing Γϕ.

Comparing Γϕ and Γmeas reveals that, despite the in-
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FIG. 3. (a) Datapoints are normalized histograms of the
mean homodyne voltage integrated for 1.8 µs conditioned on
preparing the qubit in the ground (blue colors) or excited
(red colors) states. Curves are Gaussian fits. Measurements
were repeated with squeezed (stars, solid), unsqueezed (cir-
cles, dashed) and antisqueezed (squares, dot-dashed) noise.
Fits of data conditioned on excited-state preparation include
a small second Gaussian to capture ground-state population
(. 2%) attributable to qubit relaxation before and during
the Rabi ramp-up. The overlap area is smaller with squeezing
(A1) than without squeezing (A1+A2). (b) The measurement
rate Γmeas was determined for multiple phases and amounts
of squeezing. The orange horizontal band is Γmeas with SQZ
off. Error bars, including the width of the horizontal band,
are standard errors of fits of SNR(t). The dashed curves are
results of a joint fit of all the data in Figs. 2(b) and 3(b) with
free parameters εin, δ, and a global phase.

trinsic fragility of squeezing in the presence of loss, it is
also possible for injected squeezing to improve the mea-
surement efficiency η in a lossy environment. Here we
define η = Γmeas/2Γϕ such that for perfect efficiency
η = 1. With the squeezer off, the efficiency reduces to
ηvac = εout, set by loss and added noise in the measure-
ment chain downstream of the qubit. With the squeezer
on, η depends also on εin, according to

η =
Γmeas

2Γϕ
= ηvac

Γϕ,vac

Γϕ

Γmeas

Γmeas,vac
, (4)

where the ratios are manifest in equations 2 and 3, re-
spectively. Fig. 4 shows η(Φ), calculated by dividing Fig.
3(b) by Fig. 2(b); near Φ = π/2, η increases from 0.38(1)
to 0.42(1). The increase can be understood by compar-
ing the effect of the output loss 1 − εout on SNR with

0.4

0.3

0.2

0.1

0.0

M
ea

su
re

m
en

t e
ffi

ci
en

cy
 η

Squeezing phase Ф (deg.)

GSQZ

 0.5 dB
 1.9 dB
 3.8 dB

22518013590450-45-90

FIG. 4. The overall measurement efficiency η(Φ) is shown
for several values of GSQZ. The data and fits are computed
from the corresponding elements in Figs. 2(b) and 3(b). We
attribute the asymmetry about phases where Φ is a multiple
of π/2 to misalignment of the signal quadrature with the am-
plification quadrature of the second JPA. A small increase in η
above εout can be resolved at low squeezer gain near Φ = π/2.

and without squeezing. In both cases, the mean signal
size at the cavity output is the same, and this signal is
attenuated by the factor 1−εout. Without squeezing, the
vacuum fluctuations in the signal quadrature I are unaf-
fected by the loss, so the SNR is reduced by 1− εout. In
contrast, squeezing along Q (Φ = π/2) injects amplified
noise in I which does get attenuated, partially canceling
the effect of loss on SNR. Although the initial SNR leav-
ing the cavity is lower in this case, so is the measurement
backaction, as the Q quadrature is squeezed. Thus at the
cost of decreasing Γmeas, η can be increased, with greater
enhancement seen in systems with εin � εout. For exam-
ple, η > 50% with only phase-preserving amplification
of the signal is possible. Recently, a similar technique
was demonstrated using squeezing to increase robustness
of optical cat-states [33]. The orthogonal case (Φ = 0)
has the reverse effect, increasing Γmeas and decreasing η,
with more speed-up in systems with high εout.

In summary, this work demonstrates that input squeez-
ing can reduce the noise in measurements of standard su-
perconducting qubits, and can also slow a measurement
process and its associated dephasing. In general, the pho-
ton number is bounded by nonlinearity of the qubit-field
interaction, so maximizing information per photon is use-
ful for e.g. speeding up a quantum algorithm in which
measurement is a bottleneck. Similarly, by squeezing the
other quadrature, it may be possible to reduce the nec-
essary wait time for cavity depopulation at the end of
a measurement. A natural next step is to implement
our techniques in a system highly optimized for efficiency
[34], possibly incorporating ongoing development of su-
perconducting circulators or on-chip amplifiers [35–38].
As squeezing cannot improve the SNR by more than a
factor of (1 − εout)

−1, here equal to 1.6, efficiency im-



5

provements would better leverage the large amounts of
microwave squeezing, exceeding 12 dB [6], produced to
date. Absent loss, our experimental setup is predicted to
effectively utilize up to 16 dB of squeezing [22]. Comple-
mentary studies may explore the limits of stroboscopic
readout speed by optimizing couplings or by increas-
ing ΩR to further suppress counter-rotating terms. The
latter may be facilitated by modern high-anharmonicity
qubit designs such as the C-shunt flux qubit [39]. Fi-
nally, it would be useful to investigate transient effects in
the presence of squeezing, which are of increasing impor-
tance for shorter measurement times. Here stroboscopic
or other longitudinal readout schemes may be advanta-
geous even without squeezing, as the cavity-field ring-up
and ring-down trajectories are expected to follow straight
lines in phase space in contrast to the circuitous short-
time response of dispersive measurements [17].
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