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We study the influence of atomic interactions on quantum simulations in momentum-space lattices
(MSLs), where driven transitions between discrete momentum states mimic transport between sites
of a synthetic lattice. Low energy atomic collisions, which are short ranged in real space, relate
to nearly infinite-ranged interactions in momentum space. However, the added exchange energy
between atoms in distinguishable momentum states leads to an effectively attractive, finite-ranged
interaction between atoms in momentum space. In this work, we observe the onset of self-trapping
driven by such interactions in a momentum-space double well, paving the way for more complex
many-body studies in tailored MSLs. We consider the types of phenomena that may result from
these interactions, including the formation of chiral solitons in zigzag flux lattices.

Quantum simulation with ultracold atoms [1, 2] has
been a powerful tool in the study of many-body physics
and nonequilibrium dynamics. There has been recent in-
terest in extending quantum simulations from real-space
potentials to synthetic lattice systems composed of dis-
crete internal [3, 4] or external [5] states. These synthetic
dimensions enable many unique capabilities for quantum
simulation, including the ability to engineer nontrivial
topology [4, 6] and higher dimensions [3].

Our recent development of momentum-space lattices
(MSLs), based on the use of discrete momentum states as
effective sites, has introduced a fully synthetic approach
to simulating lattice dynamics [7–11]. As compared to
partially synthetic approaches [12, 13], fully synthetic lat-
tices offer the possibility of studying coherent internal-
state dynamics that are decoupled from any motional
entropy [14]. Moreover, synthetic lattices offer a micro-
scopic control over all system parameters, analogous to
that found in photonic simulators [15, 16] but with a more
natural path to exploring the influence of interactions.

MSLs provide a bottom-up approach to engineering
designer Hamiltonians with field-driven transitions. Con-
sidering non-interacting atoms initially at rest and driven
by a single pair of counter-propagating lasers with wave-
length λ and wavevector k = 2π/λ, a discrete set of mo-
mentum states pn = 2n~k may be coupled, having en-
ergies E0

p = p2n/2m = 4n2ER, for integer state index n,
atomic massm, and photon recoil energy ER = ~2k2/2m.
Individual addressing of the unique Bragg transitions al-
lows us to engineer, with full local and temporal param-
eter control, the single-particle tight-binding model

Hsp ≈ −
∑
n,α

tn,α(eiϕn,α ĉ†n+αĉn+h.c.)+
∑
n

εnĉ
†
nĉn , (1)

where ĉn (ĉ†n) is the annihilation (creation) operator for
the state with momentum pn. Here, tunneling of order α
(e.g. α = 1 and 2 for nearest- and next-nearest-neighbor
tunnelings, respectively) is controlled through the am-
plitudes and phases of individual frequency components
used to drive Bragg transitions of order α [17]. Simi-
larly, an effective potential landscape of site energies εn

is controlled by small detunings from Bragg resonance.
A detailed description of the mapping of our system onto
this Hamiltonian can be found in Refs. [7, 8].

While MSLs have seen success in engineering diverse
single-particle Hamiltonians [8–11], the prospects for
studying interactions and correlated dynamics have not
yet been examined. In real-space atomic systems, corre-
lated physics has largely been driven by two-body con-
tact interactions [18, 19], which are nearly infinite ranged
in momentum space (i.e. with an energy independent
of relative momentum for two colliding, distinguishable
atoms). In one dimension, where collisions are mode-
preserving, the resulting all-to-all interactions in MSLs
would appear incapable of driving correlated behavior.

This description is incomplete, however, as the quan-
tum statistics of identical bosonic atoms in MSLs create
a structured interaction profile in momentum space. For
just two identical bosons, the symmetrization of the two-
body wave function adds an exchange interaction (in ad-
dition to the direct term) when the two particles collide
in distinguishable motional states [20–23]. For positive
scattering lengths, this additional long-range repulsion
between atoms in distinct momentum states can alterna-
tively be viewed as an effective attraction between atoms
occupying the same momentum state. This combina-
tion of momentum-independent collisions and quantum
statistics results in several hallmark features of bosonic
quantum fluids: the Bogoliubov quasiparticle dispersion,
distinct transport properties of heat and sound [24], and
enhanced condensation in weakly repulsive gases [25].

MSL experiments typically do not probe isolated pairs
of colliding atoms, so we should consider interactions of
atoms in macroscopically populated momentum orders.
Most experiments begin with all population in a con-
densate at rest with applied couplings to nonzero mo-
mentum states, and in this limiting case of initial, weak
excitations, the role of interactions maps onto the well-
studied scenario of Bogoliubov excitations [20, 32, 33].
We briefly consider this experimentally relevant, albeit
restricted, scenario as a simple description of how su-
perfluid screening can influence the distinguishability of



2

p/2ħk
-2 -1 0 1 2

-2 -1 0 1 2
p/2ħk

0 1 2 3 4 5 6 7

E
 / E

R

(E
p 
- E

p0 -U
) /

 U

(a)

(b)

(c)

(d) U / ER = 0

25

20

15

10

5

0

1.0
0.8

0.4
0.6

0.2
0.0

(E
p 
- E

p0 -U
) /

 U
p/2ħk

0.999

0.99

0.9

0

U / ER = 4

FIG. 1. Interaction shifts of Bragg tunneling reso-
nances. (a) Energy dispersion of non-interacting massive
atoms E0

p (red solid line) and Bogoliubov dispersion Ep of
a homogeneous gas with weak repulsive interactions and a
mean-field energy U = 4ER (blue dashed line), for recoil en-
ergy ER. Gray lines denote laser fields used to couple adja-
cent momentum states. (b) Effective momentum-space lat-
tice site energies (with a common shift of U removed and
renormalized to U) experienced by weakly-coupled excitations
of a macroscopically populated p = 0 condensate, shown for
U/ER = 0.1, 1, and 4 (solid red, dash-dotted purple, and
dashed blue lines, respectively). (c) Curves as in (b), but
plotted on a semi-log scale for a larger range of momenta,
compared to the form U − U2/2E0

p (dotted black lines) rele-
vant in the free-particle limit (E0

p � 2U). (d) Depiction of
site energies shifted by interactions with a p = 0 condensate
for U/ER = 0 and U/ER = 4.

momentum states, and thus the range of the effective at-
tractive interaction. The general description of the range
of interactions for many macroscopically populated mo-
mentum states is highly nontrivial, but when the total
density or total interaction strength is sufficiently low
such that the effects of screening are negligible, then an
effectively site-local attraction is recovered.

Considering the Bogoliubov spectrum, we assume a
uniform number density ρN relating to a homogeneous
mean-field energy U = gρN , for interaction parameter
g = 4π~2a/m and s-wave scattering length a. While re-
pulsive interactions raise the energy of p = 0 conden-
sate atoms by U , high-momentum excitations (E0

p �
2U) experience an interaction energy shift of roughly
2U due to both direct and exchange interactions with
the p = 0 condensate. For a general momentum p,
the Bogoliubov quasiparticle excitations have an energy

Ep = U +
√
E0
p(E0

p + 2U). Figure 1 depicts this mod-

ified energy dispersion, along with the form of the ef-
fective interaction-dependent shifts to the MSL site en-
ergies, which relate to the difference in energy between
the final state and the initial p = 0 state. The inter-
action has an effective range in momentum space which
increases for increasing U (Figs. 1(b,c)), reflecting the in-

fluence of screening on the distinguishability of the states
with nonzero momentum. In the limit of low interaction
strengths (2U � 4ER), these states become fully dis-
tinguishable and the interaction is effectively site local.
We note that in principle, the interactions with the zero-
momentum superfluid are expected to vanish for excita-
tions with extremely large momenta (p � ~/a) due to
energy-dependent corrections to the scattering, but such
extreme conditions are beyond current experiments.

In our system of Bose-condensed 87Rb atoms [8], we
can directly probe the interaction energy shifts of the
momentum states through Bragg spectroscopy [20, 32,
33]. For our laser wavelength of 1064 nm, first-order
Bragg resonances are expected at frequency detunings of
±4ER/~ ≈ ±2π× 8.1 kHz for non-interacting atoms. As
displayed in Figs. 2(a,b), we measure an average shift of
these first-order Bragg resonances by 2π × 1.14(5) kHz.
The shifts to the ±1 transitions are slightly different due
to nonzero initial momentum of the condensate, and we
have shifted the Bogoliubov dispersion in Fig. 2(b) to
account for this.

As a first experimental study, we explore the influence
of momentum-space interactions on population dynamics
in a coupled double well. We initialize all of the popu-
lation in the left well (p = 0 state), with a large initial
energy bias ∆i inhibiting tunneling between the wells.
This bias |∆i|/~ = 2π × 8 kHz is chosen to greatly ex-
ceed the tunneling energy t/~ ≈ 2π×390 Hz. As depicted
in Fig. 2(c), the bias is linearly swept through zero (sin-
gle particle resonance) to a final value ∆f = −∆i over
1 ms, similar to the methods of Ref. [34]. We consider
both a positive sweep (∆i < 0 to ∆f > 0) and a negative
sweep (vice versa).

In the absence of interactions, the dashed curves in
Fig. 2(d) show that the amount of population transferred
is roughly independent of the sweep direction, with a
slight difference stemming from initial condensate mo-
mentum of −0.018~k. [26]. In contrast, the presence
of site-dependent, attractive interactions causes a highly
asymmetric, direction-dependent response in the popu-
lation dynamics. Comparing the positive sweep data to
the single particle theory, we find that population begins
to transfer earlier and more population is transferred at
the ramp’s end. For the negative sweep data, interac-
tions cause self-trapping, leading to slightly lower, de-
layed population transfer.

To perform simulations, we consider a simplified de-
scription of the exact interacting system, which in gen-
eral is highly non-trivial and depends on the total density
and exact distribution of all site populations. First, we
assume that all momentum states occupy the same spa-
tial mode, ignoring effects of spatial separation. Next,
we assume that the allowed momenta relate to fully dis-
tinguishable quantum states. Thus the momentum-space
interaction becomes completely site-local, an assumption
which is only approximately true for our experimental
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FIG. 2. Interaction effects in a momentum-space double well. (a) Bragg spectroscopy of the 0 → 1 transition
showing an interaction-driven shift (dashed line) of 1.31(3) kHz from single particle resonance (solid line). The momentum
distributions, relating to the integrated optical density after 18 ms time of flight, show population transferred to the state
p = 2~k by a 400 µs-long Bragg pulse vs. detuning from single-particle resonance ∆. (b) Measured shifts for both 0 → ±1
transitions overlaid onto the Bogoliubov dispersion (dashed blue, shifted by initial condensate momentum −0.018~k) with
single-particle dispersion for comparison (solid black). (c) Experimental protocol for double well sweeps. Population begins in
left well (L) and transfers to the right well (R) as the imbalance ∆ (detuning from single-particle resonance) is swept linearly
across 0 (dashed line) in the positive (left, blue arrow) and negative (right, red arrow) directions over 1 ms. (d) Population
in the right well PR plotted vs. time τ (lower horizontal axis) and vs. the ratio of the bias to the initial bias ∆/∆i (upper
horizontal axis). Positive (left, blue squares) and negative (right, red dots) sweeps are shown with single-particle predictions
(dashed gray curves) and predictions taking into account the inhomogeneous density distribution with an average mean-field
energy U/~ ≈ 2π × 1.81 kHz [26] (solid black curves). (e) Adiabatic energy levels (I and II) of the non-interacting double well
vs. ∆. Cartoon insets depict the population distributions for large |∆/h|. (f) Population projection of the adiabatic levels
in (e) onto the right well vs. ∆. (g,h) Energy levels and population projections as in (e,f), but with an added homogeneous
mean-field energy of U/~ ≈ 2π × 1.81 kHz. Gray arrows A and B on the negative sweep denote forced tunneling pathways as
the population transfer overshoots due to self-trapping. Error bars in (b) and (d) denote one standard error of the mean.

conditions. Lastly, given that the number of atoms in
experiment vastly exceeds the number of sites, we ig-
nore quantum fluctuations and simply represent the con-
densate wave function by appropriately normalized com-
plex amplitudes φn for the various discrete momentum
states [35]. Additionally, to capture the inhomogeneous
density distribution caused by the harmonic trap [32],
we use a local density approximation, taking a weighted
average of simulation curves with different homogeneous
mean-field energies U ranging from 0 to a peak mean-field
energy U0 [26].

Under these conditions, the influence of momentum-
space interactions may be captured by the nonlinear
Schrödinger equation

i~φ̇n =
∑
m

Hsp
mnφm + U [2− |φn|2]φn , (2)

where Hsp
mn is the matrix element of the single-particle

Hamiltonian Hsp (Eq. (1)) associated with states pm and
pn. The form of Eq. 2, which assumes the normaliza-
tion condition

∑
n |φn|2 = 1, hints at the effectively at-

tractive, mode-local momentum-space interaction. We
note that all interaction terms preserve the individual
site populations, as mode mixing is disallowed for elas-
tic, one-dimensional collisions and uniform density [35–
37], except when considering multiple internal states [38]
or a lattice-modified dispersion [39, 40].

The simulated dynamics for the double-well case,
where Hsp = ∆(τ) ĉ†1ĉ1 − t(ĉ

†
0ĉ1 + ĉ†1ĉ0) for time τ , are

shown as solid curves in Fig. 2(d). These simulations
reproduce the observed direction-dependent response,
while the lack of oscillatory behavior in the data can
be attributed to spatial decoherence between momentum
orders. We performed a combined fit of the data from
Figs. 2(a-d) to obtain values for tunneling energy t/~ ≈
2π × 390 Hz, initial condensate momentum −0.018~k,
and a peak mean-field energy U0/~ ≈ 2π × 3.17 kHz of
our inhomogeneous density distribution, with an average
mean-field energy of U/~ ≈ 2π × 1.81 kHz [26].

To better understand these direction-dependent re-
sults, we consider the adiabatic energy levels of this cou-
pled two-level system [26] and their projections onto the
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measured well populations. Without interactions, the
Bragg-driven “tunneling” leads to an avoided crossing of
the adiabatic energy levels (Fig. 2(e)), allowing for com-
plete transfer between wells in the limit of an infinitely
slow ∆ sweep (Fig. 2(f)), independent of the sweep di-
rection. In contrast, adding interactions introduces a
swallow-tail-like loop structure with metastable branches
(Fig. 2(g)) [41–43]. For a slow positive sweep (starting
on the top branch), the avoided crossing is maintained,
leading to full population transfer as seen in Fig. 2(h).
For a slow negative sweep (starting on the lower branch),
atoms are forced to tunnel between the energy branches
(path B), relating to self-trapping in the initial left well as
seen in Fig. 2(h). For finite sweep times as in our experi-
ment, a combination of forced tunneling along pathways
A and B leads to a transfer efficiency that depends on the
sweep direction, but with less extreme of a distinction as
compared an infinitely slow ramp.

We note that this type of swallow-tail structure is
generic to systems with strong nonlinear interactions, re-
lating to the breakdown of adiabaticity and the possi-
bility of hysteretic response [42–45]. Such interactions
may also allow the study of symmetry breaking [46] and
two-mode entanglement [47] in momentum-space dou-
ble wells. In particular, the generation of squeezed
momentum states with the effectively mode-local in-
teractions could lead to practical advances in inertial
sensing [26]. Beyond double wells [34, 44, 46, 48–52],
MSLs offer unique capabilities for engineering multiply-
connected lattice geometries. Here we explore the influ-
ence of interactions on the particle dynamics in a zigzag
lattice (Fig. 3), where artificial fluxes play a nontrivial
role [53, 54].

We consider a zigzag lattice with uniform nearest and
next-nearest neighbor tunneling tn,1 = tn,2 ≡ t and a
uniform magnetic flux ϕ (Fig. 3(a)). We initialize pop-
ulation to a single, central site (n = 0) and simulate
dynamics following a tunneling quench. The normal-
ized site populations Pn at various evolution times τ are
shown in Fig. 3(b). For a positive flux value of π/6, dra-
matically different behavior is found for zero (U/t = 0),
moderate (U/t = 7.2), and strong (U/t = 12) interac-
tions. Without interactions, chiral currents are present,
but with a rapid ballistic spreading of the atomic distri-
bution. Moderate interactions stabilize the distribution,
leading to soliton- or breather-like states [55]. For strong
interactions, the atoms remain localized at n = 0 due to
self-trapping.

To gain more insight into the general behavior for
nonzero fluxes and varied interactions, we plot in
Fig. 3(c) the average site position 〈n〉 and the population
in the most-populated site Pmax

n versus the interaction-
to-tunneling energy ratio U/t, for a flux π/6 following a
duration τ = 65 ~/t. For weaker interaction strengths
U/t . 5, the initially localized wavepacket becomes
highly delocalized (low Pmax

n ), while on average the pop-
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FIG. 3. Interaction effects in a zigzag flux lattice.
(a) Cartoon depiction of atoms initialized at the central site
(n = 0, gray) of a zigzag lattice with uniform magnetic flux ϕ.
Nearest- (solid black) and next-nearest (dashed red) neigh-
bor tunneling links have uniform amplitude t. Shaded yel-
low region indicates two-site unit cell. (b) Site population
distributions for evolution times τ = {12.5, 25, 50, 100} ~/t,
shown for several combinations of interaction-to-tunneling ra-
tios and flux values on a 401-site lattice: solid black denotes
(U/t, ϕ) = (0, π/6), rightmost solid blue for (7.2, π/6), dashed
red for (12, π/6), solid purple for (7.2, 0), and leftmost solid
orange for (7.2,−π/6). (c) Average site position 〈n〉 (red
dashed line; left vertical axis with linear scale) and popula-
tion in the most-populated site Pmax

n (blue solid line; right
vertical axis with logarithmic scale) versus U/t. Simulations
are shown for ϕ = π/6 after an evolution time τ = 65 ~/t on
an 801-site lattice, with population never reaching the bound-
aries. Shaded gray region indicates chiral soliton stability.

ulation moves in a chiral fashion, reflecting an underlying
spin-momentum locking of the flux lattice model [53]. In
the intermediate regime (5 . U/t . 7.5), dynamics re-
lating to chiral solitons can be found. The jump in the
value of Pmax

n to a finite, nearly fixed value relates to
self-stabilization against wavepacket spreading. This self-
stabilization can also be seen in Fig. 3(b), where the size
of the chiral soliton wavepackets (blue and orange curves)
remain nearly fixed, even as they propagate throughout
the system. With increasing U/t, the solitons become
more and more “massive” and travel less far (lower aver-
age site position 〈n〉) for the fixed evolution time (65 ~/t).
This eventually gives way to full self-trapping and the in-
hibition of chiral currents for U/t & 7.5, with population
localized to the initial site.
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The chiral behavior observed for weak interactions
stems from the presence of spin-momentum locking in the
single-particle band structure, where an effective “spin”
degree of freedom relates to the two sites of the zigzag
lattice unit cell [53, 54] (shaded in Fig. 3(a)). The emer-
gence of non-dispersing chiral solitons can be understood
in terms of interaction-driven hybridization [56] of the
two energy bands in the system. Stability is found as the
interaction energy U starts to exceed the width of the
lower energy band (4t), and complete self-trapping ensues
when the interactions dominate over the combined band
width (6t). The collective chiral behavior of the atoms
under intermediate interactions is of fundamental interest
to understanding how emergent behavior can arise from
the interplay of interactions and synthetic gauge fields in
kinetically frustrated systems [54, 57–60].

In addition to this novel behavior predicted to occur in
momentum-space flux lattices [53], the ability to engineer
arbitrary forms of disorder in MSLs should enable studies
on the interplay of long-ranged momentum-space interac-
tions and disorder-driven localization [61, 62]. Further-
more, while we have presently considered the influence
of mode-preserving collisions (relevant to 1D, free-space
elastic scattering) relating to effectively local nonlinear-
ities in MSLs, other interesting types of correlated phe-
nomena may result from mode-changing collisions [35–
40], which would relate to correlated pair-hopping pro-
cesses in MSLs.

This material is based upon work supported by the Air
Force Office of Scientific Research under award number
FA9550-18-1-0082.
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