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Out-of-time-order correlations (OTOCs) characterize the scrambling, or delocalization, of quan-
tum information over all the degrees of freedom of a system and thus have been proposed as a
proxy for chaos in quantum systems. Recent experimental progress in measuring OTOCs calls for a
more thorough understanding of how these quantities characterize complex quantum systems, most
importantly in terms of the buildup of entanglement. Although a connection between OTOCs and
entanglement entropy has been derived, the latter only quantifies entanglement in pure systems
and is hard to access experimentally. In this work, we formally demonstrate that the Multiple-
Quantum Coherence spectra, a specific family of OTOCs well known in NMR, can be used as an
entanglement witness and as a direct probe of multiparticle entanglement. Our results open a path
to experimentally testing the fascinating idea that entanglement is the underlying glue that links
thermodynamics, statistical mechanics, and quantum gravity.

Entanglement in quantum systems is a resource for
quantum computation and communication and has been
called the characteristic trait of quantum mechanics [1].
Recently, it has also been proposed [2] and experimen-
tally tested in proof-of-principle experiments [3, 4] that
quantum entanglement is in fact the key concept behind
thermalization in isolated quantum systems. Essentially,
the approach to equilibrium can be understood as the
spreading of entanglement through the system’s degrees
of freedom. In parallel, the concept of “scrambling” in
many-body systems, which refers to the delocalization
of quantum information over all of a system’s degrees
of freedom, has gained great attention [5–13], motivated
by the finding that special models with thermal states
“holographically dual” to black holes can thermalize and
scramble quantum information at the fastest rate allowed
by nature [14, 15]. The scrambling rate can be quan-
tified through out-of-time-ordered correlators (OTOCs),
which have been connected to entanglement via the Rényi
entropy [5, 16]. However, the Rényi entropy is a strict
entanglement monotone only for pure systems and hard
to access experimentally, requiring resources that scale
exponentially with the subsystem size as well as single-
particle addressing. Therefore, it is desirable to establish
experimentally accessible entanglement witnesses appli-
cable to open as well as isolated quantum systems which
can be used to quantify scrambling.

In this letter, we formally show that a specific family
of OTOCs, first developed in Nuclear Magnetic Reso-
nance (NMR) under the name of the Multiple-Quantum
Coherence (MQC) spectra, are useful entanglement wit-
nesses. The MQC protocol has been for many years
known to be a suitable method to quantify the devel-
opment of many-body quantum coherences [17, 18]. Re-

cently, it has been applied to describe the spreading of
correlations [17, 19–21] and as a signature of localiza-
tion effects [22–25]. While connections between MQCs
and entanglement have been pointed out in Refs. [26–
28] and witnesses of two-particle entanglement have been
constructed in Refs. [29, 30], to date a formal relation
between the MQC spectrum and multi-particle entangle-
ment generally applicable to mixed states does not exist.
Here, we formally establish such a relation by deriving
entanglement witnesses from the MQC intensities as well
as a relationship between MQCs and the quantum Fisher
information (QFI) [31, 32], a well-known witness of multi-
particle entanglement.

To illustrate the power of these connections, we use the
specific example of a long-range Ising model in a trans-
verse field. We start the dynamics from a pure initial
state but show the applicability of the witness to mixed
states by including decoherence arising from light scat-
tering during the dynamics. This type of decoherence
is relevant for a broad class of quantum systems. Our
results demonstrate the existence of an experimentally
accessible link between scrambling measured by OTOCs
and entanglement, provided by the MQCs.

MQCs have a long tradition in NMR systems which
typically operate at high temperature. Measuring MQCs
in pure and almost zero temperature initial states is now
becoming feasible in cold-atom experiments, including
Bose-Einstein condensates, ultracold atoms in cavities,
or trapped ions [7, 33–39]. Such experiments open the
possibility to probe the rich information contained in an
entangled state via MQCs.

We start by introducing the MQCs, which have been
used as a means for quantifying quantum coherence
[17, 18, 20]. Let |ψi〉 be the eigenstates of a Hermitian
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operator Â and λi the corresponding discrete eigenval-
ues. We divide the density matrix of an arbitrary state ρ̂
into blocks as ρ̂ =

∑
m

∑
λi−λj=m ρij |ψi〉 〈ψj | =

∑
m ρ̂m.

Thus, ρ̂m contains all coherences between states with
eigenvalues of Â that differ by m. An experimentally ac-
cessible quantifier of these MQCs is the Frobenius norm
Im(ρ̂) = (‖ρ̂m‖2)2 = tr[ρ̂†mρ̂m] called multiple-quantum
intensity. The key idea is that Im can be directly ac-
cessed in an experiment that has the ability to reverse
the dynamics that created the state of interest ρ̂ from
an initial fiducial state ρ̂0. In this context, the time re-
versal can be connected with the concept of many-body
Loschmidt echos, well known probes of irreversibility and
chaos [40–44].

The protocol to measure Im is [17, 39] (see Fig. 1):
Evolve ρ̂0 into ρ̂t under a nontrivial unitary evolution

e−iĤintt, apply Ŵ (φ) = e−iÂφ, evolve backwards with

eiĤintt to ρ̂f , and finally measure the probability to find
the system in the initial state tr[ρ̂0ρ̂f ] (if ρ̂0 is pure, this

is the fidelity). Noting that Ŵ (φ)ρ̂mŴ
†(φ) = eimφρ̂m

and using cyclic permutations under the trace one finds

Ft(φ) ≡ tr[ρ̂0ρ̂f ] = tr[ρ̂t ρ̂t(φ)] =
∑
m

Im(ρ̂t)e
−imφ, (1)

where ρ̂t(φ) = Ŵ (φ)ρ̂tŴ
†(φ). Thus, by Fourier trans-

forming the signal with respect to φ one obtains the
MQC spectrum {Im(ρ̂t)} (see [45] for details). For NMR
systems typically operating at infinite temperature, this
overlap measurement reduces to a magnetization mea-
surement making it possible to observe coherences as high
as m ∼ 7000 [23, 24]. Nevertheless, the perturbative na-
ture of the coherences present in highly mixed states,
which facilitates experimental access of the MQCs, also
implies that the underlying quantum complexity and en-
tanglement content in those states are small in compar-
ison to pure states. For pure states, measuring MQCs
requires a fidelity measurement which encodes informa-
tion about N -body correlations in an N -particle system
[46]. Despite the fact that in general the resources re-
quired for measuring fidelity scale unfavorably with the
system size, the feasibility of such a measurement has
been demonstrated for up to 50 particles [39], much be-
yond what is possible with schemes involving measuring
entanglement entropy.

The connection between MQCs and OTOCs becomes

apparent from ρ̂t = e−iĤinttρ̂0e
iĤintt. By defining V̂0 =

ρ̂0, if V̂0ρ̂0 = ρ̂0 [47] the above expression can be recast
as [25, 39]

Ft(φ) ≡ tr[Ŵ †t (φ)V̂ †0 Ŵt(φ)V̂0ρ0] = 〈W †t (φ)V̂ †0 Ŵt(φ)V̂0〉
(2)

where Ŵt(φ) = eiĤinttŴ (φ)e−iĤintt, V̂0 = ρ̂0. Ft(φ)
is therefore an OTOC function, a specific product of
Heisenberg operators not acting in normal order. When
Ŵ (φ) and V̂0 are chosen to be initially commuting opera-
tors, then Ft(φ) = 1−〈|[Ŵt(φ), V̂0]|2〉. The growth of the
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FIG. 1. (a) Illustration of the scheme for measuring the co-
herences using time reversal. The state of interest ρ̂ is reached
after the first evolution period. The rotation then imprints
a phase mφ on each sector ρ̂m of the density matrix (see
text). Evolving backwards and measuring the overlap with
the initial state as a function of φ, the coherences Im of ρ̂ are
retrieved as the Fourier components of this signal. (b) An ex-
ample for the fidelity signal obtained from evolving under the
Ising Hamiltonian (Eq. (5) with Ω = 0) and rotating about

the z-axis of the spin (Â = Ŝz). By Fourier transforming
this signal one obtains the intensities Im, which quantify the
magnitude of the mth order coherences of ρ̂.

norm of the commutator, i.e. the degree by which the
initially commuting operators fail to commute at later
times due to the many-body interactions generated by
Ĥint, is commonly used as an operational definition of
the scrambling rate [5–7]. Scrambling can be interpreted
as the process by which the information encoded in the
initial state, through the interactions, is distributed over
the other degrees of freedom of the system. This process
makes it no longer possible to retrieve the initial infor-
mation by local operations and measurements.

We are now in the position to state the main results of
the paper.
• First, the second moment of the MQC spectrum

(FI/2, defined in Eq. (3)) provides a lower bound on the
quantum Fisher information FQ,

FI(ρ̂t, Â) ≡ 2

N∑
m=−N

Im(ρ̂t)m
2

= −2
∂2Ft(φ)

∂φ2

∣∣∣∣
φ=0

≤ FQ(ρ̂t, Â)

(3)

This expression becomes an equality for pure states ρ̂t.
The QFI has been introduced to quantify the maxi-

mal precision with which a parameter φ in the unitary

Ŵ (φ) = e−iÂφ can be estimated using the quantum state
ρ̂ as an input to an interferometer. It bounds the min-

imal variance of φ as ∆φ ≥ 1/
√
FQ(ρ̂, Â) (Cramér-Rao

bound) [48]. It has been shown that if FQ(ρ̂, Â) > bk ≡
nk2 + (N − nk)2 ≥ k, where n is the integer part of
N/k, then ρ̂ is (k + 1)-particle entangled [49–51]. To
derive expression (3), we used the relation FI(ρ̂, Â) =
4tr[ρ̂2Â2 − (ρ̂Â)2], which is a lower bound on the QFI
[52] (see also [45]). The choice of the generator Â can be
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optimized for detecting the entanglement of a given state
using intuition from quantum metrology.

The relation (3) has a number of implications, the
most direct one being that FI inherits the property of
FQ of being a witness for multiparticle entanglement, i.e.
FI > bk implies FQ > bk and thus k + 1-particle entan-
glement. This allows us to establish an intimate connec-
tion between scrambling of quantum information and the
buildup of entanglement. Namely, the φ-dependence of
the OTOC Ft(φ) encodes information about the entan-
glement content of the state ρ̂t. We also note that for
thermal states, QFI can be directly related to dynamic
susceptibilities, as demonstrated in Refs. [53] [see explic-
itly Eq. (4)] and [54], which are well known signatures of
quantum critical behavior and phase transitions. More-
over, the QFI is a measure of macroscopic coherences
such as appear in ”cat states” [52].
• Second, each individual Im by itself can be used as

an entanglement witness. The quantity FI only char-
acterizes the second moment of the MQC spectrum, or
equivalently, only depends on the small-φ behavior of the
measured observable Ft(φ), while the MQC spectrum,
i.e., each individual Im contains much more detailed in-
formation about the state ρ̂. To show that individual
Im can witness entanglement, we use two properties [45]:
First, the Im are convex, or non-increasing under mix-
ing (Im(pρ̂1 + (1 − p)ρ̂2) ≤ pIm(ρ̂1) + (1 − p)Im(ρ̂2) for
m 6= 0). Second, coherences of product states can be
obtained from those of the constituent sub-ensembles by
Im(ρ̂A ⊗ ρ̂B) =

∑
k Im+k(ρ̂A)Im−k(ρ̂B). With these two

properties one can, for a given m, bound the maximal Im
achievable on the set of separable states.

In the following, we outline how to derive such bounds
for systems of spin 1/2 particles. The detailed proof
can be found in the supplementary material [45]. The
spins are described by Pauli operators σ̂αj , α = x, y, z,
j = 1 . . . N , with the eigenstates of σ̂zj denoted by |↑〉j
and |↓〉j . We calculate the maximal Im achievable with
a separable state. Without loss of generality, we choose
Â = Ŝz =

∑
j σ̂

z
j /2 [55]. It follows from the convex-

ity that the maximum Im is assumed for pure states,
which for separable states take the most general form⊗

j

√
pj |↑〉j + eiϕj

√
1− pj |↓〉j . From the rule for build-

ing tensor products, it follows that Im is independent
of ϕj and is a quadratic polynomial in the pj . Noting
that Im is invariant under pj → 1 − pj , the maximum
is assumed when all pj are either extremal (0 or 1) or
equal to 1/2. For such a state with N+ spins in the equal
superposition state (p = 1/2), Im can be calculated ana-
lytically and optimized numerically with respect to N+,
which yields

Imax,sep
m = max

N+∈{0,...,N}

(2N+)!

4N+(N+ −m)!(N+ +m)!
. (4)

Thus, if for a given state ρ̂ and rotation generated by
Â, one has Im > Imax,sep

m for some m, then ρ̂ must be

entangled. Note also that IN is a witness of genuine N -
partite entanglement [56].

We now illustrate these results by applying them to
the specific case of collective spin models. We consider
a system of N spin 1/2 particles and the coherences
with respect to the collective spin operator Â = Ŝn =∑
j ŝj · n, with ŝj = (σ̂xj , σ̂

y
j , σ̂

z
j )/2 and a unit vector

n = (nx, ny, nz). Thus, the spectrum of Â consists of
the (half) integers M = −N/2 . . . N/2, and we define the
mth order coherence ρ̂m as the block of the density ma-
trix spanned by |φM 〉 〈φM+m|, where |φM 〉 are the eigen-
states of Â with eigenvalue M . We study an all-to-all
transverse field Ising model

Ĥint = −J/NŜ2
x − ΩŜz (5)

where the spins are initially prepared in |ψ0〉 = |↑〉⊗N . In
the absence of decoherence the dynamics is restricted to
the symmetric Dicke manifold, which makes it very easy
to numerically simulate the dynamics of large numbers
of spins.

In Fig. 2, we illustrate the time evolution of the coher-
ence spectrum Im for zero and non-zero transverse field.
The QFI per particle, shown as a black line, is propor-
tional to the variance of the coherence spectrum. The
figure shows that the Im surpass the bounds for separa-
ble states in large parts of the spectrum. A complex pat-
tern of self-interference emerges as soon as the coherences
become distributed across the entire spectrum and the
initially Gaussian state completely delocalizes in spin-
space. The two snapshots on the right show a relatively
short evolution time, where ρ̂t is a spin-squeezed, near-
Gaussian state, and a longer time, where the state be-
comes clearly non-Gaussian and the Im develop an intri-
cate structure for both the pure Ising and the transverse-
field Ising case. This snapshot corresponds to the longest
time that has been measured experimentally for these pa-
rameters in [39]. At this time the Im fall off at most lin-
early with m, while the bound decreases exponentially,
cf. Eq. (4). This means that the degree (Im/I

max,sep
m )

to which the entanglement bound is violated increases
exponentially with m.

Next, we discuss the impact of decoherence for an ex-
ample relevant to recent trapped-ion experiments [39,
57]. We find that decoherence can substantially re-
duce the state overlap Ft(φ). However, for the param-
eters of Ref. [39] detecting entanglement should be fea-
sible. The main source of decoherence in these experi-
ments is off-resonant light scattering, which can be cap-
tured by including Lindblad terms in the master equation
[45]. Specifically, we consider elastic Rayleigh scatter-
ing, which leads to coherence decay with rate Γel, and
Raman scattering, i.e. incoherent transitions from |↓〉 to
|↑〉 (Γdu) and vice versa (Γud). We emphasize that if
Γdu = Γud, which is typically the case in the trapped ion
experiments, tr[ρ̂0ρ̂f ] = tr[ρ̂tŴ (φ)ρ̂tŴ

†(φ)] in Eq. (1)
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FIG. 2. MQC spectra for evolution under the Ising (a)
and transverse-field Ising (b) Hamiltonian as a function of
the evolution time for N = 48 spins. The QFI per particle
is shown on top of the density plot as a solid line. k + 1-
particle entanglement is detected if FQ/N > k and in the
pure case FQ = FI . The direction of the rotation axis n is
optimized for each t. The pixels corresponding to those Im
that violate the bound for separable states are marked with
a dot. At late times reflection at the boundary of the Dicke
ladder at m = N leads to self-interference and fragmentation
of the coherence spectrum. The right panels show the coher-
ence spectrum (red solid) and entanglement bounds (black
dashed) at specific times indicated by the dashed lines in the
left panels. The gray shading shows for which m the bounds
are violated.

still holds and thus the Im can still be detected using the
time reversal scheme [45].

The role of decoherence is illustrated in Fig. 3, where
the choice of parameters is motivated by the experimen-
tal capabilities demonstrated in Ref. [39]. Typical exper-
imental parameters are J . 5 kHz, t . 1 ms, and a total
decoherence rate Γ ≈ 60 s−1, dominated by Γel. Numeri-
cal simulations were performed using an efficient density
matrix symmetrization approach [45].

Comparing FQ(ρ̂t, Â)/N (black line) with the bound

FI(ρ̂t, Â)/N (red dashed), one recovers FQ(ρ̂t, Â) =

FI(ρ̂t, Â) for pure states (Γ = 0), but as decoherence
rates are increased the bound quickly becomes less tight.
While the QFI decays slowly at small Γt, the decay of
the bound FI ∼ e−NΓt is N -fold enhanced compared to
the single-particle decay rate Γ because the global state
overlap tr[ρ̂0ρ̂f ] decays with this rate. The inverse spin
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FIG. 3. (a) and (b) Optimal QFI (black) and the lower bound
FI(t) (red dashed) as a function of the total decoherence rate
Γ = (Γud + Γdu + Γel)/2, scaled by J/N , and pure Ising dy-
namics (Ω = 0). The relative size of the individual deco-
herence rates for spontaneous emission and elastic scattering
have been chosen Γud : Γdu : Γel = 1 : 1 : 10. In the pure case
(Γ = 0) the bound coincides with the actual QFI. FI(ρ̂t, Â)
decays as exp[−NΓt], much faster than the QFI. The pa-
rameter choices are motivated by the parameters of Ref. [39],
which corresponds to typical values of (a) J = 2.9 kHz and
t = 0.6 ms and (b) J = 5.8 kHz and t = 1.2 ms. N = 48 spins
have been used. (c) and (d) Coherences Im for two differ-
ent dephasing rates in each case. Increasing the incoherent
processes by a factor of two [comparing (c) with (d)], the co-
herences globally decrease but a violation of the entanglement
bounds (dashed) is still found at large m. For all values of Γ
the QFI is calculated with respect to the rotation axis n that
is optimal for Γ = 0.

squeezing parameter [58], which also provides a lower
bound on QFI, does not witness any entanglement for
the case of Fig. 3(b) as the state is already strongly over-
squeezed.

Figures 3(c) and (d) show the coherence spectra for
two values of Γ. The main effect of dephasing is a global
decay of the Im with e−NΓt, approximately independent
of m as expected for the small t in an initially pure sys-
tem. Nevertheless, even for strong dephasing the Im still
violates the entanglement bound for sufficiently large m,
since the bound decreases exponentially with m while the
Im decay much more slowly. Therefore, even in the pres-
ence of single-particle decoherence processes we observe
that the Im remain useful entanglement witnesses in the
considered scenario. Nevertheless, one needs to deal with
the experimental challenge of detecting a small signal es-
pecially for large N . We note, however, that in Ref. [39]
MQCs below 10−2 have been resolved.

In summary, we have derived inseparability criteria
from the MQCs and a formal connection between MQCs
and the QFI. Our results demonstrate that MQCs, a spe-
cific type of OTOCs, can serve as an experimentally ac-
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cessible probe for detecting scrambling of quantum infor-
mation and multiparticle entanglement in mixed states.
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