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Complex interaction geometries offer a unique opportunity to modify the strength and sign of
the Casimir force. However, measurements have traditionally been limited to sphere-plate or plate-
plate configurations. Prior attempts to extend measurements to different geometries relied on either
nanofabrication techniques that are limited to only a few materials or slight modifications of the
sphere-plate geometry, due to alignment difficulties of more intricate configurations. Here, we over-
come this obstacle to present measurements of the Casimir force between two gold spheres using
an atomic force microscope (AFM). Force measurements are alternated with topographical scans in
the x− y plane to maintain alignment of the two spheres to within approximately 400 nm (∼1% of
the sphere radii). Our experimental results are consistent with Lifshitz’s theory using the proximity
force approximation (PFA), and corrections to the PFA are bounded using nine sphere-sphere and
three sphere-plate measurements with spheres of varying radii.

In 1948, Hendrik Casimir derived an expression for
the force between two uncharged, parallel plates result-
ing from a modification of the quantum electromagnetic
vacuum energy[1]. Yet, only a few measurements have
been performed in the original plate-plate configuration
due to difficulties in maintaining parallelism[2, 3]. In-
stead, a sphere-plate geometry is typically employed[4–
8], and comparison between experiment and theory is
performed using the proximity force approximation[9]
(PFA) to model curved surfaces as a series of paral-
lel plates. However, this approximation fails for sharp
edges[10, 11] and is predicted to have perturbative cor-
rections for smooth surfaces[12–14]. In some situations,
exact calculations predict repulsion even when the PFA
does not[15, 16].

Two experimental techniques have emerged to extend
Casimir force measurements beyond the sphere-plate and
plate-plate geometries. The first begins with a sphere-
plate geometry, and textures one or both surfaces, so
that the alignment advantages of the sphere-plate con-
figuration are maintained while effects beyond the PFA
are probed[17–19]. The second involves fabricating two
interacting surfaces out of a single crystal to ensure the
alignment of the surfaces[20, 21]; however, measurements
are limited to materials for which sufficient fabrication
techniques exist. Geometries such as the needle-and-
hole[15] and sphere-sphere[22–25] (Fig. 1a) require in
situ alignment, making detection difficult. Recent exper-
iments have probed the van der Waals force between latex
spheres in liquid by aligning the spheres using their opti-
cal interference pattern[26, 27], but the metallic coating
necessary for Casimir force measurements prevents opti-
cal alignment using that technique.

Here we present measurements of the Casimir force
between two gold-coated hollow glass spheres using an
in situ scanning technique to maintain alignment of the
spheres’ centers to within ∼1% of their radii over 24
hours of continuous measurement. Because the experi-

ments are performed in air, we determine (and mitigate)
both the electrostatic and hydrodynamic forces through
a lock-in detection scheme, while tracking the in-phase
and quadrature components of the signal. Horizontal
alignment between the two spheres is preserved by al-
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FIG. 1. (a) Schematic of the experimental configuration
with one gold-coated sphere held directly above another. (b)
Topographical scans are used to position the top sphere di-
rectly above the bottom sphere (scan speed: 10 µm/s, 64×64
pixels). (c) Spatial derivative of the force measured between
two spheres as a function of separation. During the measure-
ment, the hydrodynamic force (normalized by the shake am-
plitude) is separated from the spatial derivative of the Casimir
force through the phase of the force signal. All the individual
measurements (light dots) are shown (≈ 20,000 points). The
force gradients and separations of individual measurements
are binned into groups of ≈200 points and averaged (dark
squares). The inset shows the cantilever’s response to the
Casimir (red) and hydrodynamic (blue) forces. These data
are collected with the spheres shown in (a) and (d) of Fig. 3.
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ternating force measurements with topographical scans.
Finally, we put bounds on corrections to the PFA based
on a combination of sphere-sphere and sphere-plate mea-
surements corresponding to different radii.

To align the two spheres, we attach one to an AFM can-
tilever (Mikromasch USA), and it is raster-scanned, while
oscillating, over a second sphere. A piezoelectric trans-
ducer controls the bottom sphere, so that the oscillation
amplitude of the cantilever, and thus the separation, is
maintained while an image is recorded (Fig. 1b). We per-
form a fit to the resulting image, which allows for lateral
alignment of the two spheres to within 400 nm, or about
0.01 R′ to 0.02 R′, where R′ = (R−11 +R−12 )−1 is the effec-
tive radius of the two-sphere system. Misalignment be-
tween the two spheres results in three primary effects (see
Supplemental Information): (1) the absolute separation
of the two spheres can change by up to 1 nm, resulting in
a total separation uncertainty of ±3 nm, (2) the effective
sensitivity can change by up to ±0.3%, increasing the cal-
ibration uncertainty to ±5.3%, and (3) a discrepancy on
the order of 0.05 nm may exist for misaligned spheres due
to piezo motion, which is small enough to be ignored. We
use a commercial AFM (Cypher, Asylum Research) for
the measurements, and the environment is maintained at
303.15±0.05 K and 15±9% relative humidity.

We measure the spatial derivative of the Casimir force
(FC

′= ∂FC
∂d ) in an ambient environment utilizing the pro-

cedure developed by de Man et al. [7, 28]. This process
allows us to determine the surface separation and spring
constant, while also eliminating hydrodynamic and elec-
trostatic forces from the data channel containing Casimir
force. For each sphere-sphere configuration, we collect
data at ∼400 individual separations (from 4 µm to 30
nm) for each approach and retraction. The measurement
is split into several steps, as described below.

We first minimize the electrostatic contribution to
the total force signal at each sphere-sphere separation
through the application of two applied biases. First, an
AC voltage, VAC, is applied to the top sphere at frequency
ωA/2π = 77 Hz (while the bottom sphere is grounded),
which causes the cantilever to oscillate at an angular fre-
quency of ωA and at higher harmonics (e.g. 2ωA and
4ωA). The signal at 2ωA is used by a feedback loop to
control the amplitude of VAC to maintain a constant am-
plitude setpoint for the cantilever oscillation. A second
voltage, V0, is applied by an additional feedback loop to
the top sphere in order to minimize the cantilever oscil-
lation signal at ωA, which in turn minimizes the elec-
trostatic force, akin to a Kelvin probe feedback loop[28].
Data is acquired for each sphere-sphere separation.

While the electrostatic interaction is minimized, we
determine the spatial derivative of the remaining force
(Casimir and hydrodynamic) by oscillating the bottom
sphere with an amplitude ∆d at frequency ωpz/2π = 211
Hz and observing the response of the cantilever with a
lock-in amplifier. The phase of the cantilever’s response
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FIG. 2. Representative measurements of the spatial deriva-
tive of Casimir force for both sphere-plate (blue) and sphere-
sphere (red) measurement geometries. Results are in agree-
ment with calculated values of the Casimir force derivative for
two gold spheres with a 4.9 nm RMS perturbative roughness
correction (black line). Gray shaded region shows the uncer-
tainty in the roughness correction due to the uncertainty in
the orientation of the spheres[31]. The sphere-plate force is
measured with the sphere in Fig. 3(a), and the sphere-sphere
data are collected between it and the one in Fig. 3(d).

is used to separate the hydrodynamic force from FC
′[28].

The shake amplitude is reduced from 48 to 1 nm on ap-
proach, to maximize the sensitivity at large separations,
while also minimizing any artifact from the non-linearity
of the Casimir force.

Once the approach/retract run is completed, we de-
termine the absolute separation using the separation-
dependent tip-sample capacitance, C(d) [29]. The ca-
pacitance derivative C ′ = ∂C

∂d , calculated from VAC and
oscillations of the cantilever at 2ωA, is fit to the expected
sphere-sphere C ′ for an entire approach/retract sequence
of measurements. While fitting C ′ to determine the sep-
aration, the bending of the cantilever (< 3 nm) is taken
into account, and the modification of the capacitance due
to an expected water layer of 1.5±0.75 nm on each sur-
face is included[30]. After the force measurements, the
top sphere again approaches and retracts from the bot-
tom sphere, while electrostatic measurements are made
with VAC = 8 V to calibrate the optical lever sensitivity
and the spring constant from the electrostatic signal at
4ωA.

We repeat the topography, force measurement, and cal-
ibration cycle for 24 hours for each sphere-pair result-
ing in about 50 force-distance measurements per sphere-
sphere experiment. A total of nine sphere-sphere and
three sphere-plate measurements are recorded, with three
different top spheres and three different bottom spheres
(hollow glass, Trelleborg SI-100). The sphere radii range
from 29 to 47±0.3 µm and are epoxied to either a can-
tilever or a silicon substrate and coated (Denton e-beam)
with Cr(3)/SiO2(50)/Cr(3)/Au(100 nm). The SiO2 layer
is used to block ions from the glass sphere from dif-
fusing into the Au. The silicon plate is coated with
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FIG. 3. (a-c) Measurements of the spatial derivative of the
Casimir force as a function of separation for nine sphere-
sphere combinations. Colored data points correspond to mea-
surements between a top sphere (insets) and the three differ-
ent bottom spheres, color-matched to the topography maps
shown in (d-f). The error bars in (a-c) are dominated by the
uncertainties in the ambient water layer thickness (x-axis) and
from the stray light effect (y-axis). Black lines correspond
to Lifshitz theory with the PFA, measured optical data, and
roughness corrections.

Cr(5)/Au(100 nm).
We perform measurements for both the sphere-sphere

and sphere-plate configurations and compare their results
when using the same top sphere. The force derivative is
divided by the effective radius, R′, to compare the differ-
ent measurements (Fig. 2). The Casimir force between
the gold surfaces is computed by combining ellipsome-
try data over the range 0.74-6.3 eV with reference optical
data[32] at higher frequencies and the Drude model with
ωp=8.84 eV and γ = 42 meV at the lowest frequencies[33].
The AFM images of the surfaces are then used to esti-
mate uncertainty in the roughness correction to FC

′ [31].
A thin water layer (described above) is expected to in-
crease FC

′, primarily at small separations[34], which is
also taken into account (e.g. at a separation of 50 nm,
the water layer increases the force calculation by 5%, but

by only 1.6% at 100 nm).
All sphere-sphere measurements (nine different com-

binations) are presented in Fig. 3, showing the consis-
tency of the measurements. At the shortest separations,
roughness causes the force to increase, and at separa-
tions beyond 200 nm, stray light interference affects some
of the data. Stray light appears as an artifact that is
partially-periodic with separation, and is proportional to
∆d. Even though a superluminescent diode is used to
minimize the stray light effect, it is present in some of
the sphere-sphere data up to about 0.5 Nm−2 (although
it differs between measurements) and is about half the
level of the artifact in the sphere-plate data due to in-
creased reflection off the plate in that configuration. Pos-
sible reasons that measurements with the top sphere in
Fig. 3b show a smaller force at separations < 100 nm
are that the sphere has a deformity not captured by the
roughness measurement[31], or that its slightly smaller
spring constant has led to an increase in the separation
uncertainty.

The PFA allows FC
′ to be computed from the force

per unit area between parallel plates. However, a more
complete theory predicts the presence of deviations from
the PFA[13, 14]. The largest predicted correction is pro-
portional to 1/R′. The combination of sphere-sphere and
sphere-plate measurements gives effective radii (R′) that
vary from 13-46 µm. The wide range of R′ values al-
lows the procedure of Krause et al. [6] to be used to put
bounds on deviations from the PFA of the form:

1

R′
∂F

∂d
= 2πFpp

(
1 +

β′d

R′
+ ...

)
, (1)

≈ (2πFppβ
′d)

(
1

R′

)
+ 2πFpp,

= m

(
1

R′

)
+ b, (2)

where Fpp is the Casimir force per area between parallel
plates, β′ is a parameter defined in [6] to characterize how
the measured FC

′ differs from the PFA, m = 2πFppβ
′d

is the slope of the line fit and b = 2πFpp is its intercept.
We combine all twelve measurements to put bounds

on corrections to the PFA in the form of β′. For each
measurement, the data are binned at several separations,
with bin widths that are 2% of the separation, e.g. one
bin is 100±1 nm. All twelve FC

′ measurements at one
separation are then plotted versus 1/R′ (Fig. 4). We fit
a line in the form of Eq. 2 to the recorded data at each
separation. Then β′ is calculated from the fits as:

β′ =
m

bd
, (3)

where m and b are determined from the line fit.
The estimate of β′ is more robust to several types of

error than FC
′, which makes it better suited for explor-

ing deviations from the PFA. First, systematic uncer-
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FIG. 4. (a) Measured 1
R′F

′
C versus 1/R′ from combined

data sets of all measurements corresponding to separations
of approximately 72 nm (purple), 118 nm (red), and 265 nm
(green). For each separation, a line is fit to the data, and
Eq. 2 is used to obtain the slope, m = 2πFppβ

′d, and the
intercept, b = 2πFpp. The graphic insets depict sphere-plate
measurements on the left and sphere-sphere measurements on
the right (shaded). (b) β′ is calculated from each line fit and
plotted as a function of separation, d. Limits are placed on
overall value of β′ (shaded region), so that any individual β′

within falls within the 2-σ confidence interval of the β′ esti-
mate at every separation.

tainty in the separation (due to, for example, a water
layer) leads to a smaller error in β′, because β′ varies
less with separation than FC

′ [14]. Second, the stray
light effect, which leads to a systematic artifact in any
single experimental configuration, is effectively random
between configurations, and so the total error it imparts
is reduced. Finally, any overall systematic offset in the
calibration that is common to all 12 sets of data does not
affect the estimate of β′. The error in β′ for each sep-
aration is propagated from the error on each individual
force measurement, which is in turn calculated from: un-
certainty in the separation, uncertainty from roughness,
uncertainty from calibration, uncertainty in the amount
of the hydrodynamic force coupled into the Casimir sig-
nal channel, and uncertainty from stray light.

Figure 4b shows our experimentally determined esti-
mate of β′ for each separation, d. Early theoretical work
predicted that β′ would be independent of separation[13],
and the earliest experimental investigation of β′ in the
sphere-plate geometry found that β′ = 0± 0.4. However,
recent theoretical work has shown that for real materi-
als at finite temperature, β′ depends on separation and
is predicted to vary between -0.4 and -0.6 in the range

explored in this letter[14]. To put our bounds on β′ in a
form similar to Krause et al., we find that β′ = −6 ± 27
is within the 2-σ confidence interval of the calculated β′
at all of the measured separations.

Stronger bounds on β′ will be possible by extending the
range of radii used in the measurement. The largest pos-
sible radius that can be used is limited by the ability to
separate the hydrodynamic force from the Casimir force
(the former scales as R2, the latter as R). The small-
est possible radius must still be large enough so that the
sphere contributes much more to FC

′ than the cantilever
used to support it. If a large enough range of radii were
used, it would also be possible to look for higher-order
corrections to Eq. 1. Because the measurement of β′
is less strongly affected by systematic errors than direct
measurements of FC

′, it should facilitate comparison be-
tween experiment and theory.

In conclusion, we have measured the Casimir interac-
tion between two spheres for separations of 30-400 nm,
by combining topographical alignment with FC

′ measure-
ments. The alignment method can be used to position
any objects that may present interesting geometries for
FC
′ measurements in air. Further, the technique can

be adapted to liquid or vacuum conditions, though care
will be necessary to keep the spheres from contacting
one another when drag is minimal. Once the objects
are aligned, any type of force can be measured: criti-
cal Casimir, hydrodynamic, magnetic, etc. Finally, by
combining measurements from several experimental con-
figurations, we place limits on corrections to the PFA.
Because the experiments are conducted in ambient con-
ditions, we anticipate that the results and techniques will
be important for incorporating geometrically controlled
Casimir forces into MEMS devices.

This work was supported in part by National Science
Foundation under Grant No. PHY-1506047.
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