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Exotic topological and transport properties of Weyl semimetals generated a lot of excitement in
the condensed matter community. Here we show that Weyl semimetals in a strong magnetic field
are highly unusual optical materials. The propagation of electromagnetic waves is affected by an
interplay between plasmonic response of chiral Weyl fermions and extreme anisotropy induced by a
magnetic field. The resulting magneto-polaritons possess a number of peculiar properties, such as
hyperbolic dispersion, photonic stop bands, coupling-induced transparency, and broadband polar-
ization conversion. These effects can be used for optical spectroscopy of these materials including
detection of the chiral anomaly, or for broadband terahertz/infrared applications.

PACS numbers:

Weyl semimetals (WSMs) have unusual electronic
and transport properties originating from the nontrivial
topology of the Brillouin zone [1–3]. They have been
studied experimentally, mostly with angle-resolved pho-
toemission spectroscopy; e.g. [4–6]. The most intensely
studied phenomena include topologically protected
surface states known as Fermi arcs, the chiral anomaly,
or the non-conservation of the chiral charge in parallel
electric and magnetic fields, and the resulting anomalous
magnetoresistance [7–10]. Optics of WSMs received
relatively less attention so far. Far-infrared optical
spectroscopy studies of TaAs without the magnetic field
have been recently reported [11]. The conductivity,
magnetoplasmons, and polaritons in a magnetic field
were calculated recently in quasiclassical approximation
[12–18]. The strong-field optical conductivity was
calculated in [19]. Here we concentrate on the wave
propagation in WSMs in a strong magnetic field, when
the electron motion transverse to the field becomes
quantized. We show that hybridization of magnetoplas-
mons with electromagnetic (EM) waves in WSMs leads
to fascinating optical phenomena involving magnetopo-
laritons: hyperbolic dispersion, the absence of Landau
damping for strongly localized excitations, photonic
stop bands, coupling-induced transparency, efficient
polarization conversion, and pulse compression, to name
a few. We show that optical spectroscopic techniques
provide a straightforward and “clean” way of detecting
topological properties of low-energy electron states and
in particular the chiral anomaly. Moreover, WSMs show
strong promise for future photonic chips enabling a wide
array of broadband optoelectronic applications, such as
polarizers, modulators, switches, and pulse shapers for
mid-infrared through terahertz wavelengths.

Dielectric tensor for a WSM in a magnetic field
We consider the material which has only one pair of Weyl
nodes for simplicity, with low-energy excitations around
each node described by the Weyl Hamiltonian,

H = χ~vFσk. (1)

Here χ = ±1 is the chirality index, σ is a 3D vector
of Pauli matrices, k is the 3D quasimomentum of elec-
trons counted from the Weyl node, and we assumed an
isotropic electron dispersion (scalar constant vF ). In a
strong magnetic field oriented along z axis the 3D coni-
cal spectrum of quasiparticles near each node is split into
Landau-level (LL) subbands Wn labeled by the quantum
number n:

Wn = sgn(n)~vF

√
2|n|
l2b

+ k2z for n 6= 0, (2)

W
(χ)
0 = −χ~vF kz (3)

where lb =
√

~c
eB is the magnetic length. The electron

wavefunctions are given in [20]. We assume that the field
is strong enough so that W1 − W0 at kz = 0 is much
larger than the LL broadening determined by disorder.

The salient feature of the electron spectrum is the pres-
ence of chiral electron states with 1D linear dispersion at
n = 0 LL. The n = 0 electrons near each node are able
to move only in one direction, depending on the sign of
χ and neglecting internode scattering. The majority of
peculiar optical properties of WSMs originates from the
response of these electron states and its interplay with
inter-LL transitions.

The dielectric tensor for chiral fermions in WSMs has
a general structure typical for a magnetized electron-hole
plasma:

εij =

 ε⊥ ig 0
−ig ε⊥ 0

0 0 εzz

 (4)

where i, j = x, y, z. However, the expressions for its
components and the resulting optical response are far
from typical. Consider first the longitudinal component
εzz = εb+4πiσzz/ω where εb is the background dielectric
constant of a crystal. The conductivity σzz can be found
by calculating the linear response to the longitudinal field
Ez = Re[Eeiqzz−iωt]. It is convenient to define the opti-
cal field through the scalar potential φ = Re[Φeiqzz−iωt]



2

as E = −iqzΦ. We will assume for simplicity that the
Fermi energy for each chirality is between n = −1 and
n = 1 and the temperature is low enough so that the
states with n 6= 0 are either completely filled or empty.
The general result for an arbitrary position of the Fermi
level is given in [20]. Note also that for the longitudinal
field E‖B the transitions between the Landau levels are
forbidden in the electric dipole approximation. The re-
sulting linearized density matrix equation for the density

matrix elements ρ
(χ)
kk′ for each chirality is

− iωρ(χ)kz,k′z
+ i

W
(χ)
0 (kz)−W (χ)

0 (k′z)

~
ρ
(χ)
kz,k′z

= − i
~
eΦ〈

n = 0, kz|eiqzz|n = 0, k′z
〉 [
f
(χ)
0 (kz)− f (χ)0 (k′z)

]
, (5)

where f
(χ)
0 (kz) are populations at n = 0 unperturbed by

the optical field and we neglected relaxation, which will
be added later. The matrix element in Eq. (5) is calcu-
lated using the electron states in a magnetic field [20]; it
is equal to the delta-function δkz−qz,k′z . The solution of
Eq. (5) in the limit kz � qz is

ρ
(χ)
kz,kz−qz =

ieE
ω − χqzvF

∂f
(χ)
0 (kz)

~∂kz
. (6)

The complex amplitude of the Fourier component of the
electric current jz = ReJ̃eiqzz−iωt is given by

J̃ =
∑
kz,χ

(jz)
(χ)
kz−qz,kz ρ

(χ)
kz,kz−qz , (7)

where the matrix element of the spatial Fourier compo-
nent of the current is

(jz)
(χ)
k′z,kz

= −e
〈
n = 0, k′z|e−iqzzχvFσz|n = 0, kz

〉
(8)

and the sum can be replaced by integration. The result-
ing longitudinal component of the conductivity tensor is

σzz =
ie3BvFω

2π2~2c
1

ω2 − q2zv2F
, (9)

where the B-dependence appeared due to the density of
states in a quantizing magnetic field. The longitudinal
dielectric tensor component therefore takes the form

εzz = εb − ω2
p/(ω

2 − q2zv2F ). (10)

This result can be also obtained from the kinetic equation
[20]. This expression has several peculiar features. First,
since the electrons at n = 0 can move only in one direc-
tion with the same velocity vF , they cannot bunch in the
velocity space and there is no Landau damping. Mathe-
matically, the Landau damping emerges due to contribu-
tion from the pole in the integral over electron momenta
in the linear conductivity. However, in our case there is
no pole in the integral in Eq. (7) since the denominator
in Eq. (6) does not depend on the electron momentum.

Second, the effective plasma frequency in Eq. (10)

does not depend on the electron density: ω2
p =

2α

π

eBvF
~

,

where α =
e2

~c
; see also [9, 12]. In the limit of a uniform

electric field qz = 0 Eq. (9) immediately gives the chiral
anomaly. Indeed, if only n = 0 electrons are involved,
the chiral current jchir = ∂[N (χ=+1) − N (χ=−1)]/∂t is
related to the charge current in a uniform but time-
dependent field E‖B as ∂jz/∂t = −evF jchir. This gives
the chiral anomaly current jchir = −e2EB/(2π2~2c), in
agreement with previous results; see e.g. [2, 3] for review.

The dispersion equation EM waves incident on a
magnetized WSM propagate as eigenmodes that can be
called magneto-polaritons. They are the solutions of
Maxwell’s equations for plane waves with the dielectric
tensor from Eq. (4). For the photon wave vector q in
the (xz)-plane making an angle θ with the magnetic field
direction along z-axis, they can be written as

 ε+ − 1
2µ

2
(
1 + cos2 θ

)
1
2µ

2 sin2 θ 1√
2
µ2 sin θ cos θ

1
2µ

2 sin2 θ ε− − 1
2µ

2
(
1 + cos2 θ

)
1√
2
µ2 sin θ cos θ

1√
2
µ2 sin θ cos θ 1√

2
µ2 sin θ cos θ εzz − µ2 sin2 θ


 E+

E−
Ez

 = 0, (11)

where µ2 =
c2q2

ω2
, ε± = ε⊥± g, and E± = 1√

2
(Ex± iEy).

Longitudinal propagation. For the waves propa-
gating strictly along the magnetic field, i.e. θ = 0, the
solution to Eqs. (11) consists of two eigenmodes with

transverse polarization (“photons”),

µ2
L,R = ε±, EL,R =

1√
2
E±(x ± iy), (12)

and the wave with the longitudinal polarization E =
Ezz and dispersion equation εzz = 0 (“plasmon”). The
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plasmon dispersion is

ω2 =
ω2
p

εb
+ v2F q

2. (13)

We emphasize again that, in contrast to “usual” plas-
mons, there is no cutoff in Eq. (13) due to Landau damp-
ing at large wave vectors q > ω/vF . Therefore, a much
stronger plasmon localization is allowed, with propaga-
tion only limited by absorption due to scattering on im-
purities etc.

For oblique propagation, even at very small angles
θ, the plasmons and transverse waves are coupled to form
hybrid plasmon-polaritons. To determine general trends
and obtain analytic results, we neglect the spatial disper-
sion (qz-dependence) of εzz in Eq. (10), which is possible
as long as µ2 sin2 θ � c2/v2F . This is not so restrictive
since c/vF > 100. We also neglect any spatial dispersion
in ε± in the dipole approximation.

It is instructive first to consider the case when the
Fermi level is exactly at the Weyl point for both chirali-
ties. In this case, due to electron-hole symmetry the off-
diagonal terms in Eq. (4) vanish and the dielectric tensor
looks like the one for a uniaxial anisotropic medium. The
dispersion equation for the extraordinary wave, i.e. the
one polarized in the (x, z) plane, can be written as

µ2
x

εzz
+
µ2
z

ε⊥
= 1. (14)

The transverse components of the dielectric tensor are
always positive, whereas the εzz component becomes
negative for frequencies below the plasmon resonance,
ω2 < ω2

p/εb. In this case Eq. (14) becomes hyperbolic
and its isofrequency lines are hyperbolae. Therefore, a
magnetized WSM is a natural hyperbolic material at low
enough frequencies. Another natural hyperbolic mate-
rial is hexagonal boron nitride, where the hyperbolic dis-
persion exists in two narrow spectral ranges near the
phonon bands [22]. Otherwise, hyperbolic dispersion
is achieved in the effective medium approximation in
metal/dielectric metamaterials prepared by nanofabrica-
tion [23]. It is promising for numerous applications from
superlenses and nanoimaging to photonic integrated cir-
cuits. The plasmon resonance frequency ω = ωp/

√
εb in

WSMs which determines the upper bound for hyperbolic
dispersion is in the THz to far-infrared range for a mag-
netic field of 1-10 Tesla, εb ∼ 10 and vF ∼ 108 cm/s. It is
lower than the inter-LL absorption edge for all magnetic
fields, so the only loss mechanism is due to scattering on
impurities which depends on the material quality.

The ordinary wave in this limit is linearly polarized
along y-axis and has a standard dispersion µ2 = ε⊥.

Fig. 1 shows the dispersion (real part of µ) for the ex-
traordinary waves for several different propagation angles
θ. Far from inter-LL transitions, we can neglect any dis-
persion in the transverse part of the dielectric tensor, as-
suming ε⊥ = εb ∼ 10. We also added the scattering rate
as an imaginary part of frequency (ω+iγ) in the first term

of Eq. (5) and took γ to be 0.01 of the plasmon resonance

frequency ωres = ωp/ε
1/2
b . For longitudinal propagation

θ = 0 the photon dispersion is trivial: µ =
√
εb. For any

nonzero angle, plasmons and photons hybridize. At the
hybrid plasmon-polariton resonance n diverges in the ab-
sence of dissipation. The stop band appears between the
hybrid resonance and plasmon resonance. It is defined
by the condition µ2 < 0 so that Re[µ] = 0 and the wave
cannot propagate. At the boundaries of the stop band
Re[µ] goes through the value of 1 with a large derivative,
leading to a small group velocity vgr � c. This means
that a layer of WSM is able to compress a pulse incident
from vacuum by a factor c/vgr. All spectral features are
tunable by varying the magnetic field or the angle θ.

θ = π/4

θ = π/6

θ = π/8

θ = π/16

θ = 0
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FIG. 1: Dispersion (real part of µ(ω)) of the extraordinary
waves in a magnetic field of 10 T for several different propa-
gation angles θ.

Going back to the general case of an arbitrary Fermi
level, Eqs. (11), and arbitrary values of g leads to a bi-
quadratic dispersion equation for n:

µ4

2

(
(ε+ + ε−) sin2 θ + 2εzz cos2 θ

)
−
(
ε+ε− sin2 θ+

1

2
εzz(ε+ + ε−)(1 + cos2 θ)

)
µ2 + ε+ε−εzz = 0. (15)

The polarization coefficients of the normal modes are

E±
Ez

=
− 1√

2
µ2 sin θ cos θ(ε∓ − µ2)

ε+ε− − 1
2µ

2(1 + cos2 θ)(ε+ + ε−) + µ4 cos2 θ
.

(16)
Equations (15), (16), and (10) provide a complete

description of the electromagnetic wave propagation
in WSMs. They can be plotted numerically or solved
analytically, leading to cumbersome formulas. In the
low temperature limit we obtain analytic expressions for
all components of the dielectric tensor, see [20]. Leaving
detailed numerical studies to future publications, here
we highlight the most interesting cases. Note that a
finite separation between Weyl nodes in momentum
space by a vector 2b creates an additional anisotropy
vector and gives rise to an additional gyrotropic effect
g ∝ b [21]. Therefore, the dispersion shown in Fig. (1) is
valid only if this additional g is small. This will be the
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case when the Weyl semimetal is created by applying an
external magnetic field to a Dirac semimetal, so that the
separation of Weyl points is only due to a Zeeman-type
interaction which is typically small. We also note that
the expressions for the magnetopolariton dispersion for
a nonzero g Eqs. (15) are analytic functions around
g = 0, so the dispersion curves in Fig. (1) will change
little when g is small. The most significant effect of a
nonzero g is the appearance of an elliptical polarization,
Eq. (16) instead of the linear one when g = 0.

Coupling-induced transparency. For quasi-
longitudinal propagation, sin2 θ � 1 and plasmon-
polariton hybridization occurs in the vicinity of the plas-
mon resonance, |εzz| � 1. In this case the approximate
solution of Eq. (15) is

µ2
1,2 =

1

(ε+ + ε−) sin2 θ + 2εzz

[
ε+ε− sin2 θ + εzz(ε+ + ε−)

±
√

(ε+ε− sin2 θ)2 + ε2zz(ε+ − ε−)2
]
. (17)

The polarization coefficients become

K± =
E±
Ez

=
− 1√

2
µ2 sin θ

ε± − µ2
. (18)

In the “non-gyrotropic” limit when EF = 0 and ε+ =
ε− = ε⊥, the extraordinary wave has dispersion

µ2
2 =

εzzε⊥

ε⊥ sin2 θ + εzz
; K+ = K− = − 1√

2

εzz
ε⊥ sin θ

. (19)

The hybrid resonance corresponds to the vanishing real
part of the denominator for µ2

2 in Eq. (17) or (19), when
|µ2

2| � 1.
The effect of coupling-induced transparency emerges

near the plasmon resonance where mu2 can be of the
order of 1 or smaller. When the angle θ is not too small,
|εzz| � 1, sin2 θ � 1, but |ε±| sin2 θ � |εzz|, the disper-
sion and polarization of the “extraordinary” wave (the
wave that becomes extraordinary if EF = 0) are simply

µ2
2 =

εzz

sin2 θ
;
Ex,y
Ez

= − εzz
2 sin θ

ε− ± ε+
ε+ε−

. (20)

In this case one can have |µ2| � ε± whereas the elec-
tric field of the wave is directed almost along the mag-
netic field, i.e. still quasi-longitudinal. Note that µ2

2

in Eq. (20) depends only on the εzz component, which
means that the propagation is not affected at all by
the resonant inter-LL absorption losses described by the
imaginary parts of ε±. The medium effectively be-
comes transparent for this wave! More accurately, its
losses are determined only by the imaginary part of εzz,
i.e. disorder-related scattering. Within the transparency
band, strong plasmon-photon coupling forces the polar-
ization of the wave to be oriented almost along B, and
therefore it is nearly decoupled from the transitions be-
tween LLs. The narrow band of transparency within

a broad line of inter-LL absorption is defined by the
range of frequencies where |εzz| is small enough, namely
|εzz| � |ε±| sin2 θ. The situation is similar to the elec-
tromagnetically induced transparency (EIT) [24], only
in the case of EIT the coupling between two quantum
oscillators is provided by a coherent EM drive; see the
comparison in [25]. The transparency will be visible
if the disorder-related losses determined by Imεzz are
lower than the inter-Landau level absorption losses de-
termined by Imε±. Introducing the electron scattering
rate γ in εzz, one can derive the visibility condition as√

γ
ω sin2 θ

< Imε±. The value of γ depends on the par-
ticular material, material quality, and temperature. For
example, far-infrared spectroscopy of TaAs [11] (without
the magnetic field) found the scattering time varying be-
tween 3 and 0.4 ps from low to room temperature. A
value of Imε+ ∼ 3− 5 around ~ω ∼ 100 meV as in Fig. 2
would lead to the visibility condition sin θ > 0.01− 0.03.

In the same limit the “ordinary” wave has the dis-

persion µ2
1 =

2ε+ε−
ε+ + ε−

and elliptical polarization in the

plane of vectors q and y:
Ex
Ez

= sin θ and
Ey
Ez

=

i(ε+ + ε−)

ε+ − ε−
sin θ.
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FIG. 2: Absorption spectrum for LHC (solid line) and RHC
(dashed line) polarizations in a magnetic field B = 10 T at
zero temperature, the Fermi energy of 60 meV, and the re-
laxation constant γ = 1 meV.

Intersubband transitions and optical detection
of the chiral anomaly. So far we considered peculiar
optical properties of WSMs due to massless 1D chiral
fermions at the n = 0 LL. Here we show that resonant
inter-LL absorption from n = 0 to n 6= 0 states provides
another sensitive method of studying chiral fermions
near Weyl nodes and in particular, detecting the chiral
anomaly. Consider the propagation of transverse modes
in the Faraday geometry when the eigenmodes are left-
hand or right-hand circularly polarized (LHC or RHC).
The derivation of the conductivity is outlined in [20].
Fig. 2 gives an example of the absorption spectrum at
low temperatures when the Fermi level EF = 60 meV is
between n = 0 and n = 1 LLs and has the same value for
both chiralities. Absorption edges of the lowest-energy
transitions 0→ 1, then −1→ 0, −2→ 1, and −1→ 2 are
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clearly visible in different polarizations (the last two tran-
sitions coincide). In particular, there is a broad range of
frequencies between 50 and 200 meV when only the LHC
polarization is absorbed. Therefore, a several µm thin
WSM film can serve as a broadband polarizer converting
from linear into circular polarization. Note that both the
frequency bandwidth and the polarization coefficient are
tunable by a magnetic field and/or Fermi level position.
Other obvious applications include optical isolators and
saturable absorbers.
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FIG. 3: Absorption spectrum before (solid line) and after
(dashed line) a constant electric field E‖B is applied which
shifts the Fermi levels by ±30 meV in the two Weyl nodes.
The magnetic field is 10 T and the relaxation constant γ = 1
meV.

Fig. 3 shows the evolution of this spectrum when a
constant voltage is applied parallel to the magnetic field,

which shifts the Fermi levels for the two chiralities by±30
meV. Here we assumed that before applying bias, the
Fermi energy was equal to 60 meV at both Weyl points.
As is clear from Fig. 3, when a voltage is applied, an
additional absorption edge appears in the spectrum for
each polarization, which will be clearly distinguishable as
long as the magnitude of the Fermi energy shift is larger
than kBT . Note that this behavior and the possibility of
the optical detection of the chiral anomaly was predicted
in Ref. [16].

In conclusion, we showed that unique topological prop-
erties of low-energy quasiparticles in WSMs give rise to a
plethora of highly unusual magneto-optical effects, which
provide an efficient way of studying these fascinating ma-
terials and can be utilized in future photonic devices in
the terahertz through mid-infrared range. All effects are
broadly tunable by varying the magnetic field, electric
bias, or the propagation angle. We hope that our study
will stimulate further experimental work in this rapidly
developing field.
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