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Strongly disordered pseudogapped superconductors are expected to display arbitrarily high val-
ues of kinetic inductance close to the superconductor-insulator transition (SIT) that makes them
attractive for the implementation of large dissipationless inductance. We develop the theory of the
collective modes in these superconductors and discuss associated dissipation at microwave frequen-
cies. We obtain the collective mode spectra dependence on the disorder level and conclude that
collective modes become a relevant source of dissipation and noise in the outer proximity of SIT.

A piece of superconductor is characterized by the phase
of the order parameter, ϕ. Because the order param-
eter Ψ = |Ψ| eiϕ, the state of the superconductor does
not change when ϕ → ϕ + 2π even if it is connected
to other superconductors by Josephson junctions. How-
ever, for a superconductor that is also connected to oth-
ers by a very long superconducting wire, the change of
the phase by 2π leads to the states that are distinguish-
able even though the energy due to the phase variations
along the wire might be vanishingly small. In this sys-
tem a plethora of new physical effects becomes possible
such as formation of Bloch states in the Josephson poten-
tial, current Shapiro steps, etc. All these effects require
that the phase change by 2π leads to a state of the same
energy but distinguishable from the original one. Quan-
titatively, the superconducting wire can be characterized
by the energy E = (1/2)ELϕ

2 where ϕ is the phase dif-
ference and EL = ~

2/(e2L) and L is the effective induc-
tance. The energy EL should be much less than all rel-
evant energy scales, for a typical problem this translates
into L & 1µH. Such a superinductor should be dissi-
pationless, and as such it should contain no low energy
modes, in particular it should not form a low frequency
resonator. This limits the geometrical size of the superin-
ductor to a few µm, for realistic thin film wire the width
is limited by w & 20 nm that translates into L� & 10 nH
for the inductance per unit area. The question is if such
superinductors are physically possible?

An attractive candidate for superinductors is the su-
perconductor close to the superconductor-insulator tran-
sition (quantum critical point). One expects that at
the transition the superfluid stiffness ρS = 0 (ρS =
~
2/e2L�), so if this transition leads to an insulating

state with a large gap, in the vicinity of it the super-
fluid stiffness can be arbitrarily small corresponding to
arbitrarily large superinductances. Generally, there are
two mechanisms for the destruction of the superconduc-
tivity by disorder that lead to a quantum critical point
where ρS is exactly zero (for recent reviews see1,2). The
first (fermionic) mechanism attributes the suppression of
the superconductivity to the increase of the Coulomb in-
teraction that results in the decrease of the attraction
between electrons and their eventual depairing.3 In this

mechanism the state formed upon the destruction of the
superconductor is essentially a poor conductor. This
mechanism clearly does not lead to the formation of the
superinductance. The alternative (bosonic) mechanism
attributes superconductivity suppression to the localiza-
tion of Cooper pairs that remain intact even when su-
perconductivity is completely suppressed. The theory
of the bosonic mechanism has a long history: this sce-
nario of the superconductor-insulator transition was sug-
gested long ago4–7 but was not developed further until
recently2,8 when experimental data indicated it might in-
deed occur in InO.9–12

In this letter we show that as the bosonic SIT is ap-
proached the collective modes are pushed down to low
energies. In BCS theory the critical temperature of the
superconductor or its low energy gap does not depend on
the disorder. In the simplest model of the bosonic SIT
the critical temperature does not depend on the disorder
until the latter exceeds some critical value. At larger val-
ues of the disorder the transition temperature decreases
quickly and eventually becomes zero while single elec-
tron gap, ∆P remains constant.2 It is natural to asso-
ciate the regime where the transition temperature de-
pends on the disorder with the critical regime of the SIT
in the bosonic model. As we show below, the collective
modes are pushed to low energies even outside the criti-
cal regime. This severely limits the possible values of the
kinetic inductances that can be achieved in the strongly
disordered superconductors close to SIT.

Before we give the details of the model of the bosonic
SIT and its low energy properties we discuss its main
physical assumptions and materials in which such physics
might be realized. The main assumption of the bosonic
model is that Coulomb repulsion does not lead to the
electron depairing. This might occur if it is screened
by the electrons far from the Fermi surface. In other
words, the Coulomb interaction between superconduct-
ing electrons is small due to a large effective dielec-
tric constant of the material. Empirically, in this case
one expects that superconductivity occurs against the
background of the insulating R(T ). This is the situa-
tion in InO that displays strong insulating temperature
behavior that is followed by superconductivity at very
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Figure 1. Schematics of the phase diagram, order parame-
ter distribution function and collective mode spectra at low
T of strongly disordered superconductors obtained from the
solution of model (1) in cavity approximation. At large disor-
der, K < K1, the distribution of the order parameter becomes
anomalously broad (upper panel) and Tc is rapidly suppressed
and becomes Tc = 0 at K < Kc (lower panel). In the regime
of the critical suppression of Tc, K < K1, delocalized col-
lective modes exist for all frequencies. For smaller disorder,
K1 < K < K2 very low frequency modes are localized. The
modes ω = 0 disappear completely only K2 < K. The nu-
merical values of K shown here correspond to the interaction
constant g = 0.129 that gives TBCS ≈ 10−3EF . Arrows in-
dicate the values of K for which distribution is shown in the
upper plot.

low T .9–11 Large dielectric constants, κ & 103 are ex-
pected in superconductors derived from high-κ host13,
SrTiO3, such as SrTiO3-LaAlO3 interfaces14,15 or Nb-
doped SrTi1−xNbxO3

16. In the material where Coulomb
interaction is completely suppressed by large κ one ex-
pects that Tc and ∆P initially increase with disorder due
to the electron wave function localization before the ef-
fects of the suppression of Cooper pair tunneling sup-
press Tc and ρS leading to SIT while the single elec-
tron gap ∆P remains large everywhere. Such unusual
behavior (with the maximum of Tc) was indeed observed
in SrTiO3-LaAlO3 system.15,17,18 The increase of Tc fol-
lowed by abrupt transition to the insulating state was
also observed in LixZrNCl crystals

19 as well as in slightly
oxidized aluminum wires (aka granular aluminum), in
the latter the suppression of the superfluid density is
not accompanied by a significant dissipation at high
frequencies20, pointing towards the bosonic mechanism.
Finally, a likely candidate for this physics are supercon-
ducting semiconductors with low density of carriers, such
as In-doped PbzSn1−zTe

21,22 The distinguishing feature
of the bosonic SIT is the different behavior of the tunnel-

ing and conductivity gaps which allows their experimen-
tal identification23–26.
An excellent probe for the absence of the low energy

modes is provided by the appearance of the coherent
phase slips that are expected in the wires made from
thin films with large ∆P and small ρS . This was indeed
observed27 in InO wires and other strongly disordered su-
perconductors that retain significant single electron gap:
NbN and TiN.28 However, in all these materials the qual-
ity factor remains low indicating a significant intrinsic
dissipation. While expected for fermionic suppression
mechanism in NbN29–31 and TiN32,33 that leads to the
formation of the subgap states, the reason for the dissi-
pation in InO remains unclear.
Model. We consider a simplified model of a pseudo-

gapped superconductor where single-particle excitation
are totally absent so that all electronic degrees of freedom
can be represented in terms of Anderson pseudospins34

that describe population and hopping of localized elec-
tron pairs. In other words, we assume that ∆p is larger
than all relevant energy scales of the problem. The low
energy physics is described by

H =
∑

i

2ξis
z
i −

∑

(ij)

(Jijs
+
i s

−
j + h.c.) (1)

where indices i, j enumerate localized single-electron
states, notation (i, j) indicates a pair of connected sites,
ξi represent their energies, and spin- 12 operators si

are related with electron creation/annihilation operators
a+i,σ, a

−
i,σ by 2szi = a+i,↑ai,↑ + a+i,↓ai,↓ − 1, s+i = a+i,↑a

+
i,↓

and s−i = ai,↓ai,↑. Matrix elements Jij that describe
hopping of localized Cooper pairs are determined by
single-electron wavefunctions ψ2

i (r) which are supposed
to be localized at relatively long spatial scale: Jij =
g̃
∫

d3rψ2
i (r)ψ

2
j (r). In a 3D pseudogapped superconduc-

tor typical value of matrix element Jij depends in a non-
trivial way on the energy difference between the partici-
pating states: ǫij = |ξi − ξj |, see Ref.2; this dependence
is due to fractal nature of nearly-critical (in terms of An-
derson localization) electron eigenfunctions. An effective
number Z of localized electron states j(i) coupled to a
given state i by hopping matrix elements Jij depend on
the difference between Fermi energy EF and localization
threshold Ec; increase of disorder moves EF further into
the localized part of the spectrum, decreasing Z. The
model (1) neglects the effect of the long range Coulomb
interaction that is inconsistent with bosonic mechanism
(see Supplemental material).
Solution. In order to obtain the analytical solution

we simplify further the model (1). Namely, we assume
that all the sites i, j where spins si are located, belong
to a Bethe lattice with coordination number Z = K + 1
and all nonzero couplings Jij are equal and connect each
spin with its Z nearest neighbors: Jij = 2g/K, such
normalization is used to allow for a well-defined limit of
K → ∞. Random variables ξi are distributed indepen-
dently over sites i with the flat density P (ξ) = 1

2θ(1−|ξ|).
Within this model, increase of disorder corresponds to
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the decrease of K. We have shown previously35 that
within such a model a standard BCS-type phase transi-
tion takes place at very large K ≥ g exp(1/g), while at
lower (but still large) values of K spatial fluctuations of
superconducting order parameter become large and even-
tually lead to an unusual kind of a quantum T = 0 phase
transition from superconducting to insulating state.
In the present Letter we concentrate upon the low-

temperature properties of a superconducting state at
moderately large values of K in the range Kc < K1 <
K ≤ K2, where g ≪ 1 and

Kc = ge1/(eg); K1 = ge1/2g; K2 =
g

4
e1/g (2)

The region K > K1 is known35 to possess a usual BCS-
like temperature-controlled superconducting transition

with Tc = Tc0(g) = 4eC

π e−1/g and low-temperature am-

plitude of the order parameter ∆(T = 0, g) = 2e−1/g.
At smaller K superconducting transition temperature
Tc(g,K) is suppressed with respect to Tc0(g) and eventu-
ally vanishes at K = Kc. In the range Kc < K < K1 lo-
cal values ∆i of the order parameter fluctuate strongly35,
with a ”fat tail” extending to the range of ∆i much larger
than its typical value ∆typ = exp(〈ln |∆i|〉) that also van-
ishes at K → Kc + 0. At larger K > K1 the order pa-
rameter follows BCS relation and its spatial fluctuations
are relatively weak.
Contrary to expectations at K > K1 there is a whole

band of delocalized low-lying collective excitation modes
with a lower cutoff of their energies ω1(K) growing upon
the increase of K. Moreover, we find a band of localized
collective modes with ω < ω1(K) which extends down to
zero energy as long as K ≤ K2.
We start the derivation of our results by writing the

action for low-ω transverse fluctuations bi(ω) of the or-
der parameter. These fluctuations are parameterized
via phase rotation of the mean-field solution: ∆i(ω) =
∆ie

iϕ(ω) ≡ ∆i + bi(ω) with action

A = −
∑

i,j

bi(ω)Ĵ
−1
ij bj(ω) +

∑

i

b2i (ω)
√

ξ2i +∆2
i

ξ2i +∆2
i − ω̄2

(3)

where ω̄ ≡ ω/2. At K > K1, ∆i ≈ ∆ = 2e1/g. The
action (3) is directly applicable for ω ≪ ∆; at energies
comparable to ∆ antisymmetric coupling (neglected in
(3) between transverse mode and longitudinal (gapful)
mode might become relevant. Equation for the collective
mode can be obtained as an extremum of the action (3)
with respect to bi(ω):

bi(ω) =
∑

j

Jijbj(ω)ηj(ω) where η(ω) ≡

√

ξ2j +∆2

ξ2j +∆2 − ω2

(4)
At ω = 0 it is satisfied automatically for bi = const·∆ due
to self-consistency equations for local order parameters
∆.

Eqs. (3,4) are general, below we study eigenfunc-
tions of (4) defined on the Bethe lattice and employ
the method developed in the seminal paper36. To use
this method we need to introduce the self-adjoint lin-
ear operator L̂ related to (4), its matrix elements are

Cij = Jij [ηi(ω)ηj(ω)]
1/2. Eqs.(4) possess delocalized so-

lutions if the expansion for the imaginary part of the

Green function Ĝ =
(

1̂− Ĉ + iδ
)−1

in powers of Ĉ is sin-

gular. This singularity is indicated by the nonzero value
of typical imaginary part (ℑGii)typ of the local Green
function in the limit of δ → 0. We look for the singularity
threshold within the ”forward path” approximation35,37

equivalent to the ”Anderson upper limit” condition36, i.e.
we neglect self-energy corrections for the Green func-
tion Gii(ω). Each path over Bethe lattice that con-
tribute to (ℑGii) is traversed twice (forward and back-
ward). Therefore summation over the paths is equiv-
alent to calculation of partition function ZDP (N) for
the N -links directed polymer (DP) model with weights
wij = J2

ijηi(ω)ηj(ω) defined on nearest-neighbor links:
ZDP (N) =

∑

P

∏

{l(P )} wij .

We need to find an extensive part of the DP free energy
FDP (N) = lnZDP (N) ≈ Nf at N → ∞; localization
threshold is determined by the condition 〈f〉 = 0 where
averaging is over distribution of random ξi. An equivalent
way to calculate f is to use modified weights w̃ij = J2

ijη
2
j ;

the difference between corresponding partition functions
ZDP and Z̃DP is concentrated at the end points of each
contributing path and thus does not contribute to f =
limN→∞

1
N FDP (N).

The shortest method to calculate f is to use replica
trick as described in35,37. It gives:

exf(x) ≡ K

∫ 1

0

dξ

[

g

K

√

ξ2 +∆2

ξ2 +∆2 − ω̄2

]2x

= 1,
∂f

∂x
= 0

(5)
Here 0 < x < 1 is an anomalous exponent that mea-
sures the degree of Replica Symmetry Breaking (RSB) for
the DP problem (within usual mean-field theory x = 1
and second equation in (5) is absent). The condition
∂f/∂x|x0

= 0 selects typical Green functions of the op-

erator Ĉ introduced above; the first equation in (5) then
leads to f(x0) = 0 which indicates a critical point be-
tween localized domain for f(x0) < 0 where typical Green
function decays upon iterations, and extended domain,
which corresponds then to f(x0) > 0, where linear iter-
ations diverge and nonlinear terms should be taken into
account to get stable distribution.

At K = K1 = ge1/2g and ω = 0 the system of equa-
tions (5) can be solved exactly (up to relative corrections
∼ e−1/g ≪ 1), with x = 1/2. At slightly large K > K1

and low energies ω̄ = E∆ we look for the solution assum-
ing 2x − 1 ≡ ǫ ≪ 1 and E ≪ 1. Expanding the integral
in (5) up to the 2nd order in ǫ and up to the 1st order in
δK = K − K1, we find (the term ∝ E2 can be omitted
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in the second of Eqs.(5)):

E2 = ǫ
δK

K1
− ǫ2

24g2
, ǫ = 12g2

δK

K1
(6)

leading to the result for the threshold energy in the main
order expansion over δK/K1 ≪ 1:

ω1

2∆
≡ E(K) =

√
6g
K −K1

K1
(7)

Eigenfunctions with ω > ω1 are extended, while those
with lower energies are localized. Numerically obtained
delocalization line for ω1(K) is shown in green in Fig.
1 for specific choice of ∆ = 10−3, that corresponds to
g = 0.129 and K1 = 5.85.
To find the domain of existence of localized eigenfunc-

tions with low energies ω ≪ ∆, we use another criterion
based upon (5). Namely, we look for solutions of the
equation ∂f/∂x|x0

= 0 such that x0 < 1 and f(x0) < 0.
The condition x0 < 1 guarantees RSB that implies the
different behavior of typical and average of Green func-
tions. Namely, in the limit in the limit of δ → 0 the
average imaginary part of the Green function has a finite
value which implies that the density of states is non-zero
in this regime. The condition f(x0) < 0 implies that the
wave function decreases, so this regime corresponds to the
localized states. This band of localized state ends when
x0 coincides with unity: at this point typical average of
the imaginary part of the Green function 〈ℑG(ω)〉typ be-
comes equal to the simple average, 〈ℑG(ω)〉 = πρ(ω).
Because at the same time f(x0 = 1) < 0, 〈ℑG(ω)〉 de-
cays upon iterations over the Bethe lattice, and ρ(ω) = 0
at the stationary point of these iterations. Therefore, the
boundary of the parameter region with ρ(ω) > 0 is given
by the solution of the equation ∂f/∂x|x0=1 = 0, where
f(x) ≡ f(x, ω,K) is defined in (5). At ω = 0 a straight-
forward calculation leads to the result (2); in deriving
it we used the equality

∫∞

0
dt

cosh t ln cosh t = π
2 ln 2. At

ω > 0 the same procedure provides the dependence of
the spectrum boundary ω2 on K in the region ω ≪ ∆:

K2(ω) = K2
∆√

∆2 − ω̄2
≈ K2

[

1 +
1

2

( ω

2∆

)2
]

(8)

Numerical solution of the equation ∂f/∂x|x0=1 = 0 gives
the red line in Fig. 1b. Qualitatively, the appearance of
K2 as one of characteristic value for coordination number
Z = K + 1 in our model can be understood by notic-
ing that at K ≫ K2 the total number of neighbors in
which local energies ξi ∼ ∆ becomes large, so at these
K the system becomes similar to conventional Ginzburg-
Landau superconductor.
Experimentally observable properties. The spectrum

shown in Fig. 1b translates into microwave properties of
the superconductors. In the vicinity of the transition the
spectrum of delocalized collective modes extends to zero
frequency. Even for K > K1, at which the critical tem-
perature of the superconductor does not experience the

suppression due to the quantum critical point, the low en-
ergy modes are delocalized at relatively low frequencies
∆ > ω > ω1(K) resulting in a relatively large intrin-
sic dissipation of the superconductors at these frequen-
cies. The resonators made from such superconductors
exhibits low quality factors. As the disorder is decreased
the delocalized modes are shifted to higher frequencies.
At ω < ω1(K) the oscillation with frequency ω excite
only long-living localized states, so that the dissipation in
the superconductor is suppressed. However, the localized
modes extend down to zero frequencies for K < K2. At
any non-zero temperatures these low frequency bosonic
modes are excited. Because the relaxation of these modes
is slow, their occupation numbers fluctuate slowly with
time. This, together, with the mode-mode interaction
implies that the frequency of the high energy modes ex-
perience significant jitter in the rangeK1 < K < K2. The
microwave properties described above can be compared
with the other predictions of the model (1). Namely,
one expects broadening of the distribution function at
K < K1 sketched in Fig. 1a that was observed in12.
Another experimentally measurable characteristic is the
behavior of superfluid stiffness that is proportional to
the ∆2 in the whole range of K considered here.38 Fi-
nally, we note that fluctuational conductivity is given by
a slightly modified39 Aslamazov-Larkin formula above Tc
for K > K2 which can serve as yet another verification
of the applicability of the theory; similarly one can esti-
mate the value of K2 from ultrasound attenuation mea-
surements that are expected40 to become exponentially
low only at K > K2. Notice that these different regimes
happens within the pseudogapped regime where localiza-
tion of single electron function leads to the formation of
preformed Cooper pairs.2. Such materials are expected
to have normal-state resistivity Rn only several times be-
low the critical value Rc. Experimentally, for moderately
thin films the value of Rc ∼ 10 kΩ. Assuming that ρs for
the film is suppressed by a factor of 2 − 5 compared to
BCS formula ρBCS = π∆/R�

27,28,38 we conclude that
for the films with ∆ ∼ 1 − 2K and R� ∼ 1 − 2 kΩ one
should be able to reach L� ∼ 10 nH as required for su-
perinductor. However to achieve this goal the material
should be tuned into the regime where resistance is al-
ready large but not too large so that effective K > K2.
Notice that very small gap in the microwave experiment
was reported recently in strongly disordered NbN films,
see Fig. 3d in25. We also mention recent complimen-
tary approach clarifying classical Mattis-Bardeen theory
of microwave conductivity for strongly disordered super-
conductors41,42.

Conclusion. We demonstrated theoretically the pres-
ence of low-lying collective modes in disordered supercon-
ductors in the outer proximity of the SIT, and formulated
the conditions for realization of a dissipationless superin-
ductors.
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