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INFN - Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Italy

2Department of Physics, Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Dated: December 20, 2017)

We propose and analyze a method that allows for the production of squeezed states of the atomic
center-of-mass motion that can be injected into an atom interferometer. Our scheme employs disper-
sive probing in a ring resonator on a narrow transition in order to provide a collective measurement
of the relative population of two momentum states. We show that this method is applicable to a
Bragg diffraction-based strontium atom interferometer with large diffraction orders. This technique
can be extended also to small diffraction orders and large atom numbers N by inducing atomic
transparency at the frequency of the probe field, reaching an interferometer phase resolution scaling
∆φ ∼ N−3/4. We show that for realistic parameters it is possible to obtain a 20 dB gain in inter-
ferometer phase estimation compared to the Standard Quantum Limit. Our method is applicable
to other atomic species where a narrow transition is available or can be synthesized.

A major effort in the field of atom interferometry [1]
is focused on increasing the instrument sensitivity, ei-
ther by enhancing the momentum transferred by the light
onto the atoms [2, 3] or by increasing the interrogation
time [3–6]. For given momentum transfer and interro-
gation time, the instrument sensitivity is determined by
the phase noise of the interferometer. By applying differ-
ential schemes, many systematics and noise sources can
be efficiently rejected as common-mode effects [7, 8], and
one eventually meets a fundamental limit associated with
the uncorrelated phase noise of different atoms, the so-
called Standard Quantum Limit (SQL) ∆φSQL = 1/

√
N ,

where N is the atom number.

This limit can be overcome by introducing quantum
correlations between the individual particles, thereby
producing squeezed atomic states, potentially reaching
the Heisenberg limit ∆φH = 1/N [9, 10]. For squeez-
ing of atomic internal states, many schemes have been
studied both theoretically [11, 12] and experimentally
[13–21], with almost 20 dB of observed noise reduction
compared to the SQL [22, 23]. The key feature of most
of these schemes is the enhanced atom-light interaction
in an optical resonator that enables the generation of
correlations between distant atoms. The implementa-
tion of these methods with motional states in atom in-
terferometry remains, however, a challenging task. In
this Letter we propose and analyze a scheme that gener-
ates strongly squeezed momentum states [9, 24] for atom
interferometry. In particular, we consider the production
of squeezed states of the atomic center-of-mass motion by
dispersive probing of a momentum-state superposition of
atoms in an optical ring resonator. For the bosonic iso-
tope of strontium 88Sr, the interest is motivated by its
expected immunity to stray fields in atom interferometers
and by the possibility of attaining long coherence times
in quantum interference [25, 26]. The presence of narrow
intercombination transitions makes the atom well suited

for squeezing experiments involving external degrees of
freedom.

The proposed scheme is illustrated in Fig. 1, where two
vertical counterpropagating laser beams B1 and B2 in-
duce a momentum state superposition between the states
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FIG. 1. a) Schematic setup with the probe field b̂in coupled
to the optical cavity and interacting with the atoms (green
circle) through the oblique beam with angle α with respect to

gravity. The reflected field b̂out is measured by the detector D.
The atomic states are manipulated through the Bragg beams
B1 and B2. b) Level diagram for probing on the 1S0−3P1

transition (red arrow) and for momentum state manipulation
through Bragg diffraction on the 1S0−1P1 transition (blue
arrows). c) Interferometer trajectories and measurement se-
quence. The interferometer is formed by a π/2−π−π/2 Mach-
Zehnder sequence with interrogation time T . The cavity-
enhanced squeezing measurement with duration Tm is indi-
cated as M1. The Bragg pulse θ induces a phase-sensitive
state for the interferometer and the final readout measure-
ment is performed (M2). Lower part: Bloch sphere represen-
tation of the state evolution.
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|1S0, p = 0〉 and |1S0, p = 2n~kb〉 by n-th order Bragg
diffraction [2] on the dipole-allowed 1S0 − 1P1 blue Sr
transition at 461 nm. Here the atomic linear momentum
is indicated by p and the photon momentum is denoted
by ~kb. The duration of the Bragg diffraction pulses is
set in order to couple the two momentum states only.
This condition is typically met by pulse durations of the
order of 10 µs [27].

We consider squeezing of the atomic states by collec-
tive measurements of the relative population of the two
momentum states through dispersive detection in a ring
cavity (Fig. 1). This is achieved by probing for a time
Tm on the red 1S0−3P1 intercombination line of stron-
tium at 689 nm using a laser beam, of angular frequency
ωr, incident onto the cavity. Probing is performed when
the free-falling atoms cross the cavity mode volume.

In the following, measurements of the cavity output
field b̂out are considered and the sensitivity to atom
number fluctuations between momentum states is com-
puted. As such measurements provide collective infor-
mation about the ensemble without distinguishing be-
tween individual atoms, they project the ensemble into
a collective state which corresponds to the measurement
outcome [15]. This process can produce conditionally
squeezed atomic momentum states that can be imple-
mented in atom interferometers with significant metro-
logical gain.

We treat the two momentum states as a spin-1/2 sys-
tem and describe the ensemble by a total spin S = N/2,
where N is the atom number. The population difference
between the two momentum states is then 2Sz.

We quantify the attainable metrological gain ξm by
the ratio between the contrast squared C2 and the pop-
ulation variance (2∆Sz)

2 normalized to the atom shot
noise variance 2S [10]:

ξm =
S

2(∆Sz)2
C2. (1)

The squeezing pre-measurement of Sz can be achieved
by arranging a situation where the two momentum states
are associated with opposite variations of the index of re-
fraction and shift the cavity resonance frequency in op-
posite directions.

As shown in Fig. 1 b), the probe light inside the
cavity couples atoms in the state |1S0, p〉 to the state
|3P1, p+ ~kr〉, where ~kr is the probe photon momen-
tum, corrected by the factor cosα due to the angle
between gravity and the oblique cavity beams (Fig. 1
a)). The transitions associated with the two momen-
tum states |p = 0〉 and |p = 2n~kb〉 are then separated
by the Doppler effect 2δωr ≡ kr 2n~kb

M = 2πn cosα× 28.6
kHz, that is much larger than the natural linewidth
Γ = 2π× 7.6 kHz of the 1S0-3P1 transition. For small α,
the factor cosα yields a small correction to the frequency
splitting which we neglect in our discussion. When the
cavity resonance frequency ωc is tuned halfway between

the two optical transitions, atoms in the two momentum
states produce opposite shifts of the cavity resonance fre-
quency that can be detected via the phase shift ∆φph of
the light reflected from the cavity (Fig. 1 a)).

It can be shown that (see Supplemental Material [28])

∆φph =
4κin

κ SzηLd(δωr)
[2κin

κ − 1−NηLa(δωr)][1 +NηLa(δωr)]
(2)

i.e. the population difference can be detected via the
phase shift of the light emerging from the cavity. Here
Ld(∆) = −2Γ∆/(Γ2 + 4∆2) and La(∆) = Γ2/(Γ2 + 4∆2)
are the atomic dispersion and absorption profiles, re-
spectively. The single-atom cooperativity is indicated as
η = 4g2/(Γκ), where 2g is the vacuum Rabi frequency, κ
is the cavity mode linewidth and κin is the contribution to
κ due to the input mirror transmission. The light phase
measurement can be performed, for example, through the
Pound-Drever-Hall technique. If the detector is at the
photon shot noise level, the variance of the population
difference between the two momentum states, normal-
ized to the variance 2S of the atom shot noise, is given
by [28]

2(∆Sz)
2

S
=
La(δωr)[1 +NηLa(δωr)]

2

4Nηεdnsc[Ld(δωr)]2
, (3)

where εd is the detection efficiency [28], and we have ex-
pressed the measurement strength in terms of the aver-
age number nsc of photons scattered per atom into free
space, since the latter process constitutes the main, and
fundamental, limitation on the attainable squeezing [34].
After the scattering of one photon by one atom, the mo-
mentum superposition is destroyed and the associated
recoil causes the trajectory to deviate from the vertical
direction. The resulting losses cause a random imbalance
2(∆Sz)sc of the populations in the two momentum states.
Assuming that each atom scatters at most one photon,
the population variance increase is (2∆Sz)

2
sc = 2Snsc.

By accounting for free space scattering we can then com-
pute the optimum metrological gain, which is attained
for

nsc =

√
La(δωr)[1 +NηLa(δωr)]2

4Nηεd[Ld(δωr)]2
. (4)

The resulting gain is represented by blue circles in Fig. 2
for the case where εd = 1 and Nη = 104, for varying
Bragg diffraction orders n. When Nη lies in the range
103 − 104, there is significant gain if n > 5, a condi-
tion typically met by large-momentum-transfer atom in-
terferometers [3]. Indeed, for small n, the optical tran-
sitions are not sufficiently resolved in frequency space
compared to the atomic linewidth, which prevents oper-
ating in the dispersive regime of atom-light interaction
and leads to substantial absorption and squeezing reduc-
tion. In general, considerable gain can be observed if
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FIG. 2. Expected metrological gain ξm as a function of the
Bragg diffraction order n, assuming perfect detection effi-
ciency, εd = 1 and for Nη = 104. The blue circles refer to the
scheme shown in Fig. 1 b). Values shown as red squares and
magenta diamonds refer to the scheme in Fig. 3 a), where
EIT is present with Ωeff = 2π × 400 kHz and with perfect
transparency Ωeff =∞, respectively.

NηLa(δωr) � 1, so that n � 0.3×√Nη, in which case
the gain saturates at a value ξm ≈

√
Nηεd, independent

of the Bragg diffraction order.

We propose a scheme where it is possible to enhance
the signal-to-noise ratio of momentum-state population
collective measurements also at small Bragg diffraction
orders n, while keeping the collective cooperativity Nη,
and thus the squeezing, large. As the main limitation
in this regime is the spoiling of the cavity finesse by
atomic absorption, we consider a scheme where coupling
of the decaying 3P1 state to the metastable state 3P0

with a much longer lifetime results in electromagneti-
cally induced transparency (EIT) at the original cavity
resonance frequency [35–38] (see Fig. 3). The 3P1-3P0

coupling is attained through two-photon Raman coupling
via the 3S1 intermediate state with the two copropagat-
ing Raman lasers R1 and R2 at 679 nm (3P0−3S1 tran-
sition) and 688 nm (3P1−3S1 transition), respectively.
As discussed in detail in [28], for a large detuning of the
Raman lasers from single-photon resonance, we can adi-
abatically eliminate the excited 3S1 state and describe
the system in a three-level picture formed by the states
1S0, 3P1 and 3P0 with the effective control Rabi fre-
quency Ωeff [28, 39, 40]. In Fig. 3 b) we plot the spec-
trum of the cavity power transmission coefficient T for
Nη = 3× 103, Ωeff = 2π× 400 kHz and diffraction order
n = 1. This shows that the coupling to the metastable
3P0 state removes the atomic absorption, allowing for
a significant increase in the signal-to-noise ratio of the
squeezing measurement. EIT thus results in a reduced
effective linewidth which in turn allows to operate in
the dispersive regime. This condition is fulfilled when
NηLa(δωE) � 1, or |δωE |/Γ �

√
Nη/2, where now
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FIG. 3. a) Level diagram for the generation of squeezed mo-
mentum states enhanced by induced transparency via the 3P0

state. The Bragg laser beams are indicated as B1 and B2. The
effective control field that couples the states 3P0 and 3P1 is
obtained by two-photon Raman coupling via the 3S1 inter-
mediate state. The two Raman beams R1 and R2 operate at
the wavelengths 679 nm (3P0−3S1) and 688 nm (3P1−3S1),
respectively, and are detuned from the transition to the 3S1

state by ∆R. b) Cavity transmission spectrum with (red solid
line) and without (blue dashed line) Raman coupling to the
3P0 state for Ωeff = 2π × 400 kHz, Nη = 3× 103 and n = 1.
The two lateral peaks correspond to the vacuum Rabi split-
ting for κ = 2π × 50 kHz. The population measurement is
performed at the frequency of the transparency region (at
probe detuning δ = 0) which corresponds to a linewidth of
κEIT = 2π × 6 kHz.

δωE = δωr − Ω2
eff/(4δωr). We also note that in terms

of laser power of the Raman beams, this condition is
less demanding for narrow transitions compared to broad
dipole-allowed transitions. The corresponding metrolog-
ical gain in the presence of EIT is shown in Fig. 2 as a
function of diffraction order by two sets of points that
correspond to a finite coupling strength Ωeff = 2π × 400
kHz (red squares) and to perfect transparency Ωeff =∞
(magenta diamonds).

Fig. 4 shows a comparison between the presence and
the absence of the Raman coupling to the 3P0 state. In
terms of metrological gain, EIT is equivalent to large
diffraction orders and allows to recover the signal-to-noise
ratio that would be otherwise lost because of photon ab-
sorption.

An atom interferometry scheme including the squeezed
source proposed here is the following (Fig. 1 c)): stron-
tium atoms are cooled and trapped at the cavity mode
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FIG. 4. Metrological gain ξm as a function of the number of
photons scattered into free space per atom for different Bragg
diffraction orders and for varying Raman coupling strength:
n = 5,Ωeff = 0 (blue solid line); n = 20,Ωeff = 0 (red dashed
line); n = 1,Ωeff = 2π × 400 kHz (magenta dot-dashed line).
We assume a collective cooperativity Nη = 104 and perfect
detection efficiency εd = 1.

waist close to the center of the optical cavity, then, a mo-
mentum superposition is created by a Bragg π/2 pulse
and immediately after that the squeezing measurement
of the relative population is performed (M1). At this
stage the atomic ensemble is projected into a state with
reduced relative population uncertainty. The state on the
Bloch sphere is then transformed into a phase-sensitive
state by applying a Bragg π/2 pulse with a phase shift of
90◦ with respect to the first pulse. Following this prepa-
ration stage, a π/2−π−π/2 Mach-Zehnder interferometer
sequence of laser pulses is applied. A final measurement
(M2) is performed using, for example, fluorescence detec-
tion.

With realistic values for the various parameters, our
method is applicable to strontium atoms with the cur-
rent technology. Specifically, we consider an optical cav-
ity where one of the foci has a waist w0 = 150 µm, at the
position where the atoms cross the cavity mode volume.
With a cavity finesse F = 2.5 × 104 and at the wave-
length λ = 689 nm, we get a single-atom cooperativity
η = 6Fλ2/(π3w2

0) ≈ 0.1 [31]. We then consider N ≈ 105

atoms occupying a volume with a linear size of about
30 µm. Therefore, a collective cooperativity Nη ≈ 104

is achievable. The maximum possible Bragg diffraction
order with our method is set by the condition that the
transit time of the wavepackets corresponding to the two
momentum states through the cavity beam waist is larger
than the time duration of the collective measurement.
We estimate the useful transit time as the one taken by
a wavepacket with speed n~kb/M to cross one tenth of
the effective mode waist. Because the atoms are cross-
ing the cavity beam vertically, the effective mode waist
is w0/ sinα. We therefore estimate the maximum Bragg

diffraction order as nmax = Mw0/(10~kbTm sinα), where
Tm is the measurement time duration. With α ≈ 0.4
rad and Tm ≈ 200 µs we get nmax = 10. However, the
maximum Bragg order can be made considerably larger
by a suitable design of the cavity geometry, where w0 is
made larger and α is made smaller. The measurement
time is set by the requirement that the number of pho-
tons scattered into free space is sufficient to provide the
optimum metrological gain. To resume, by considering
a collective cooperativity Nη = 104, first-order diffrac-
tion n = 1, a Raman coupling strength Ωeff = 2π × 400
kHz, a measurement time Tm = 200 µs and a detec-
tion efficiency εd = 1, we conclude that the optimum
number of photons scattered into free space per atom is
nsc = 5 × 10−3, corresponding to the excited state pop-
ulation Pexc = nsc/(ΓTm) = 5 × 10−4. In this case it is
possible to achieve a metrological gain of 20 dB.

In conclusion, we have proposed and analyzed a novel
scheme that allows for the production of squeezed mo-
mentum states for large-momentum-transfer Bragg atom
interferometers. The essence of our method is based on
the ability to resolve the Doppler splitting of two momen-
tum states by using a probe laser with frequency close
to the narrow 1S0−3P1 intercombination line of stron-
tium. With realistic parameters we show that 20 dB of
noise reduction in atom interferometer phase measure-
ments can be attained compared to the Standard Quan-
tum Limit, with less than 1 ms preparation stage. More-
over, at small diffraction orders, where cavity-enhanced
absorption would limit the resolution necessary for the
collective measurement, we have shown that it is pos-
sible to induce a transparency at the frequency of the
probe laser by two-photon Raman coupling, thus recov-
ering the required dispersive regime. With this method
it is then possible to attain significant squeezing also for
small Bragg diffraction orders and large atom numbers,
with an atom number scaling for the interferometer phase
resolution ∆φ ∼ N−3/4. Our method is applicable to
atomic species where narrow transitions are available or
can be synthesized through Raman coupling between hy-
perfine ground states, as, e.g., is possible for alkali atoms.
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