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We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-
star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and
spatial distributions that are realistic, and with none of the sources located within 100 Mpc. We achieve such an
accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness
from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies we
utilize analytical fits to postmerger numerical-relativity waveforms in the time domain, obtained here for the
first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit
quasi-universal relations to derive errors in compactness from those frequencies. Measuring the average radius
to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and
300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy. We also give error
estimates for the Einstein Telescope.

PACS numbers: 04.25.Dm, 04.25.dk, 04.30.Db, 04.40.Dg, 95.30.Lz, 95.30.Sf, 97.60.Jd

Introduction. The direct observation of gravitational waves
(GWs) by LIGO [1] has increased the expectation that ad-
vanced GW detectors will also detect other types of bina-
ries, including binary neutron stars (BNSs). Imprinted in the
GWs emitted by BNSs is the signature of the equation of state
(EOS) of nuclear matter. This signature manifests itself during
the inspiral phase, when the two stars are tidally deformed [2],
and in the postmerger, when an unstable hypermassive neu-
tron star (HMNS) can form, emitting GWs at characteristic
frequencies [3–5]. In both cases, however, these imprints will
be extremely small and the accuracy of measurement of EOS
parameter(s) will be poor, even in detectors like Advanced
LIGO (aLIGO) [6] and Advanced Virgo (AdV) [7], unless the
binary happens to be nearby.

One way to address this problem is to combine the informa-
tion in multiple observations [8] with the expectation that the
EOS parameter errors will reduce as the number of observa-
tions increases. For instance, the tidal deformability parame-
ter can go down as fast as the inverse-square-root of the num-
ber of BNS detections [9, 10]. Yet, several tens of observa-
tions are needed to reduce the errors to a level where only ex-
treme EOSs can be distinguished. An alternative method is to
measure the characteristic frequencies of the merger and post-
merger signals [4, 11–14]; e.g., the frequency at amplitude
maximum, fmax, correlates closely with the tidal deforma-
bility of the two stars [13, 15, 16], and the spectrum of the
postmerger GW signal exhibits at least three strong peaks of
increasing frequency, dubbed f1, f2, and f3 [12, 13].

In this Letter, we explore how well the radius of a neu-
tron star can be measured by utilizing both the inspiral and
postmerger phases of the signal from multiple observations.
For this purpose, we utilize numerical-relativity (NR) simula-

tions to devise an analytical model of the postmerger wave-
forms of four reference nuclear-physics EOSs (ALF2, SLy,
H4, and GNH3; see [13] for details) in terms of a linear su-
perposition of damped signals with characteristic frequencies
f1 and f2. The model allows us to estimate errors ∆f1,2,
which are very large for individual observations in aLIGO or
AdV as the signal-to-noise ratio (SNR) of postmerger oscil-
lations is . 1 for a source at ∼ 200 Mpc. However, the
joint error, e.g., in f2, for a population of ' 100 BNSs, uni-
formly distributed in the comoving volume between 100 Mpc
and 300 Mpc, and observed in the aLIGO-AdV three-detector
network, is a few to several percent, depending on the EOS. In
essence, for a given binary with average mass M̄ and average
radius at infinite separation R̄, the quasi-universal relations
between characteristic frequencies f1 and f2 and compactness
C := M̄/R̄ [13, 17] can be used to deduce the error in C from
the errors in those frequencies, for various masses and mass
ratios.1 Such measurement of C can be combined with that
of the total-mass from the inspiral to estimate the average ra-
dius for a BNS population. We show that for these ' 100
BNS observations the error in radius is 2− 5% for stiff EOSs
and 7 − 12% for soft EOSs. Our conclusion is that advanced
detectors can help discriminate between stiff and soft EOSs.
However, distinguishing two stiff EOSs, will be harder, with
additional difficulties for very soft EOSs, whose postmerger
signal is considerably weaker.

With important differences, our conclusions broadly
agree with those presented recently by other groups.

1 While our analysis utilizes these relations, it is not affected by how strictly
universal they are.
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Agathos et al. [10] estimated the evolution of the medians and
95% confidence intervals in the measurement of the leading-
order term c0 in the expansion of the tidal deformability at the
reference mass of 1.35M�, for some reference EOSs in simu-
lated aLIGO data [10] and a Gaussian mass distribution. They
found that inspiral signals from ≈ 100 or more BNSs are re-
quired for determining c0 to 10% accuracy. Our analysis is
different in that instead of constructing Bayesian posteriors
of c0 from the inspiral waveform, we use Monte-Carlo sim-
ulations to estimate the radius, but require similar number of
sources for discriminating similar pairs of EOSs.

Clark et al. [18] have instead used principal-component
analysis to infer the postmerger waveform in various planned
or proposed detectors and deduced that in aLIGO the radius
of a BNS at a distance of 30 Mpc and with component masses
of 1.35M� each can be estimated to within 430 m, which is a
3 − 4% error. This result appears to agree with our strong-
signal case discussed below up to a factor of two. How-
ever, their estimates of the postmerger amplitudes are likely
affected by the use of more dissipative numerical methods
than those employed here and by an approximate treatment
of general relativity. We also account for the deterioration
in the measurement arising from covariances of BNS masses
and the postmerger frequencies values, on the one hand, and
the improvement in estimation accuracy that can be had from
knowledge of the total-mass from the inspiral phase, on the
other hand.

The rate of BNS mergers remains rather uncertain, with es-
timates ranging from 20 in five years [19–21] to 50-100 in two
to three years [8, 22] in aLIGO-AdV, none of which is cur-
rently ruled out [23]. This is why we present here radius-error
estimates for 20, 50 and 100 detections.
Postmerger waveforms. NR simulations have shown that the
most likely product of a BNS merger is a metastable HMNS
that exists for several tens of milliseconds before collapsing
to a black hole [5]. The GWs emitted from such an oscillat-
ing, bar-shaped object show a strong correlation with the stiff-
ness of the nuclear material and hence with the EOS [5]. In
addition to its dependence on the total-mass, mass-ratio and
EOS, the postmerger GW signal has robust spectral features
with prominent peaks at increasing frequencies f1, f2, f3.
These peaks are reminiscent of spectral lines in atomic transi-
tions [24], so that imprinted in the spectrum of the postmerger
signal is the state of dense, nuclear matter.

It is generally accepted that the most prominent peak, f2
(see Fig. 1), reflects the spin frequency of the m = 2-
deformed HMNS, while the origin of the broader f1 peak is
still under debate. The fact that the f1 peak is short-lived, dis-
appearing after a few milliseconds, and is accompanied by a
symmetric peak at even larger frequencies f3 ∼ 2 f2 − f1,
supports the interpretation that it is a transient signal produced
right after the merger by the damped collisions of the two stel-
lar cores (see [13, 17] for a toy model).

Accurate modeling of waveforms from BNSs requires
computationally formidable NR calculations. Since we
are interested in constraining EOS parameters with exten-

sive Monte-Carlo simulations of signals from ' 100 bi-
naries with various EOSs independent noise realizations
and average measurements over hundreds of BNS popula-
tion realizations, it is clear that the accuracy and costs of
the NR calculations need to be traded with a less accu-
rate but computationally efficient description of the wave-
forms. Hence, we derived a phenomenological model for
the postmerger waveform using analytical fits in the time
domain to a catalogue of NR waveforms [13, 17] that can
be expressed as a superposition of damped sinusoids with
a time-evolving instantaneous frequency [18, 25]: h+(t) =
α exp(−t/τ1)

[
sin(2π f1t)+sin(2π(f1−f1ε)t)+sin(2π(f1+

f1ε)t)
]

+ exp(−t/τ2) sin(2π f2t+ 2πγ2t
2 + 2πξ2t

3 + πβ2).
Here, t = 0 refers to the merger time, f1ε = 50 Hz, and the
ansatz reproduces all of the postmerger “+” polarization sig-
nals, up to an overall amplitude; this is to be contrasted with
the ansatz considered in [25], which models the waveforms
only after the amplitudes have decayed to half of the initial
values2. The above fit not only agrees very well with the sig-
nal spectra near f1 and f2, but also with the signal phase in the
time-domain, giving matches of∼ 80−94%. Therefore, when
combined with a semi-analytical model of the inspiral wave-
form, e.g., via a post-Newtonian expansion with tidal correc-
tions, the fitting ansatz gives a complete analytic description
of the signal from merging BNSs. The above fit, parameter-
ized by eight parameters (see Table I in the supplemental ma-
terial), produces an accurate representation of the waveform
phase and a reasonably good description of its amplitude. The
top panels in Fig. 1 show NR amplitudes h+(t) and the ana-
lytical fits for four different EOSs and for sources at 50 Mpc.
The bottom panels show the corresponding spectral ampli-
tudes, 2

√
f |h̃(f)|, and the sensitivity curves of aLIGO and

the Einstein Telescope [27]. Here h̃(f) is the Fourier trans-
form of h+(t).

Two remarks are in order: First, the four EOSs chosen
provide a good coverage of the plausible range in stiffness
of nuclear matter, but do not represent very soft EOSs, such
as APR4 [28]. The corresponding postmerger signal is much
more complex [13, 17], with beats between different frequen-
cies not reproduced with our simple fitting ansatz. Second,
our fits best represent equal-mass systems and although the
masses in observed binaries do not differ significantly, it is
unlikely that LIGO sources have mass ratio q = 1. Never-
theless, the quasi-universal relations used here continue to be
valid also for systems with mass ratio q & 0.8 [13, 17].

Our analytic waveforms also facilitate the interpretation
of the Monte-Carlo results described below in terms of
the Fisher information matrix parameter estimates, which
broadly agree with the former (see Table I in the supple-
mental material), except for the soft EOSs. 3 For a source

2 Better matches can be obtained by including more terms and parameters in
the ansatz; however, the main effect of a less than perfect match is a lower
SNR; see also Ref. [26] for an alternative ansatz.

3 The Monte-Carlo studies are significant since Fisher estimates, on their
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FIG. 1. Top panels: Postmerger strain from NR waveforms for four EOSs and a representative mass of M̄ = 1.325M�; our analytical ansatz
is shown as a transparent line of the same color. Only the initial 12 ms of the complete 25 ms waveforms are reported to aid the comparison.
Bottom panels: Corresponding spectral amplitudes shown with the same color convention, superposed on the strain sensitivity curves of aLIGO
and the Einstein Telescope (ET) [27]. Similarly good matches are produced also for M̄ = 1.250M� (cf. Table I and Fig. 3 in the supplemental
material).

even at 50 Mpc, the postmerger signal alone will be diffi-
cult to detect in an aLIGO-like detector. As an example, the
postmerger waveform of the H4 binary with average mass
1.325M� (H4-1325) has |2h̃(f) f1/2| ' 10−22/

√
Hz at

f = f2 ' 2470 Hz, with the frequency bin-width be-
ing δf ∼ 100 Hz. The aLIGO noise amplitude at this fre-
quency is Sh(f2) ' 1.26 × 10−46 Hz−1, thus yielding an
SNR ' |2h̃(f)f1/2|[δf/(f Sh(f))]1/2 ' 1.8.

A small postmerger SNR, however, does not necessarily
imply that the observations contain no information. Rather,
small-SNR postmergers can provide constraints if combined
constructively over a population of such signals. As an exam-
ple, a Fisher-matrix analysis gives the 1 − σ error in mea-
suring f1 and f2 for a population of 100 H4-1325 BNSs
at 100 Mpc with optimal sky-position and orientation to be
∆f1/f1 ' 10% and ∆f2/f2 ' 1%, or ∆f1 ' 177 Hz
and ∆f2 ' 27 Hz in a single aLIGO detector (see Table I in
the supplemental material). Exploiting the quasi-universal re-
lations between f1, f2 and the compactness (see the left two
panels in Fig. 2 in the supplemental material), we can infer the
error in C through error propagation. For the aforementioned
100 BNS observations, we deduce from the error in f2 (which

own, can not be trusted when the SNR is not very high.

is much better measured than f1) that the fractional error in
the measurement of the compactness is as small as ≈ 1.0 %.
Similar results are obtained for the other EOSs, and masses
and are listed in Table I in the supplemental material. These
make the case, e.g., for a thorough Monte-Carlo investigation.
Radius measurement from a single BNS. For the H4-1325
BNS at 30 Mpc, optimally oriented and located in sky, the
complete inspiral-merger-postmerger SNR ≈ 211, even
though the postmerger SNR ≈ 6.4, in the aLIGO-AdV net-
work. (Averaging over sky locations and orientations will re-
duce these SNRs by a factor of 2.26 [8, 29].) At such a dis-
tance, the error in average binary mass is much smaller, at
0.08%, and ∆ C/C ≈ 0.9%. In this strong-signal case, the ra-
dius error reduces to 0.9%, or 125 m. In a single aLIGO detec-
tor, the error will rise to ≈ 215 m. This is roughly two times
more accurate than the value given in Ref. [18], the primary
reason being that their waveforms are more rapidly damped
than ours, as noted above. Furthermore, while our errors are
estimated for the average radius of the parent BNS, the error
in Ref. [18] is estimated for the radius of a cold nonrotating
neutron star of mass 1.6M� (R1.6) and for a single value of
the average mass (M̄ = 1.350M�); we find this approach not
applicable to our data and that of other groups (see Fig. 5 in
the supplemental material).
Radius measurement from a BNS population. At such small
SNRs it is not possible to measure f1,2 accurately. However,
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for a population of N > 1 BNSs it is possible to align and
stack the f2 peaks, so that for a large enough N , and uncor-
related noise across those N observations, the stacked ampli-
tude spectra can have enough SNR to allow for an accurate
measurement of f2. A realistic population will have a vari-
ety of mass pairs, but since the total-mass of a BNS system
correlates well with f2 [17, 30], one can use a measurement
of Mtot = 2M̄ from the inspiral waveform to deduce it. To
test this idea, we performed a Monte-Carlo simulation (see
supplemental material) comprising multiple timeseries, each
with a simulated postmerger signal from this BNS popula-
tion added to Gaussian noise with aLIGO zero-detuned-high-
power (ZDHP) noise power spectral density (PSD) [31] for all
three detectors. Similar to Ref. [18], we rescaled the multiple
signal spectra to align the f2 values deduced from the (gen-
erally erroneous) total-mass estimate for each signal to stack
all at a chosen common frequency, f c2 . Standard spectral fre-
quency estimation yielded the value of f c2 and its statistical
spread for that population. We next used the quasi-universal
relation between f2 and compactness, and error-propagation,
to deduce the error in the neutron-star radius of that popula-
tion, for any given EOS.

Since the mass distribution of extragalactic BNSs is not
known, we study two different populations. In the first
case we took the masses to be uniformly distributed in a
range listed below. In the second case, we built a large set
of normally distributed masses centered at 1.35M�, with
standard-deviation 0.05M�, to mimic the masses in galactic
BNSs [10]. We then drew our sample of 2N masses from this
distribution by restricting them to lie within a given range.

For all EOSs and the two mass distributions (Gaussian and
uniform) the radius errors found from Monte-Carlo studies are
similar to those obtained from Fisher studies, provided one
limits the masses to the range [1.2, 1.38]M� (see Fig. 2). As
an example, observations of 100 BNSs, with Gaussian mass
distribution, in aLIGO will measure the radius with a 5% ac-
curacy for ALF2 (at 90% confidence). The same set observed
by the Einstein Telescope (ET) [27] will measure it with an
accuracy of 0.7%; for other EOSs, the error in ET is a fac-
tor of ≈ 7 smaller than the aLIGO values shown in Fig. 2,
respectively.

A notable departure from Fisher estimates in Fig. 2 is the
error for the Gaussian mass distribution with the SLy EOS.
The reason for the agreement with the Fisher-matrix estimates
elsewhere is that the average value of f2 is not very high.
However, for the Gaussian mass distribution for SLy, the av-
erage f2 is the highest, so that for the same percentage error
in f2, the error ∆f2 is largest for SLy. This implies that the
stacking of signals works less perfectly and the summed sig-
nal at the fiducial frequency grows slower with the number of
observations than what is realized in the Fisher method. To
confirm this behaviour, we performed two Monte-Carlo simu-
lations with 100 BNSs each, one with all neutron star masses
= 1.25M� and another with all of them = 1.325M�. For
the SLy EOS, the radius error is ≈ 2.7% for the first (low-
mass) case, but rises to ≈ 10% for the second case, at 90%
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FIG. 2. Estimated relative error in the radius measured, at 90%
confidence level, versus the average population radius for different
EOSs and N = 20, 50, 100 (different shadings) BNSs distributed
uniformly in a comoving volume between 100 and 300 Mpc. The
two panels refer to binaries whose distribution in mass in the range
[1.2, 1.38]M� is either uniform (top) or Gaussian (bottom). Shown
with dashed lines are the errors from the Fisher-matrix analysis for
N = 50.

confidence.
From Fig. 2 it is clear that as the EOS gets softer, the Fisher-

matrix errors will be less credible. If the EOS turns out to be
soft, then measuring the radius to an accuracy of 10% will be
challenging with aLIGO-like detectors.
Conclusions. We have presented a new method to infer the
average radius of a population of neutron stars in BNSs that
employs both the inspiral-merger and the postmerger phases.
The postmerger allows for the measurement of the compact-
ness, which complements the measurement of the component
masses from the inspiral to determine the radius. Our mod-
eling of the postmerger can help produce complete inspiral,
merger and postmerger time-domain waveforms.

It may be argued that our results are somewhat limited for
a couple of reasons. First, our phenomenological fits and the
estimates of the errors ∆ f1,2 are given for binaries with mass
ratio q ' 1. However, we have found that similar fits can
be obtained for unequal mass-ratios studied in [17], and that
∆ f1,2 are very similar in such cases for signals with the same
SNRs. This observation is consistent with those made in [18].
If nature relents to provide us with an especially strong signal,
such that the network SNR of the postmerger signal is ≈ 6.4,
which can happen if the source is of optimal orientation and
sky-position, and located at a distance of 30 Mpc, then our
method can be used to deduce the radius to about 1.6%, at
90% confidence level. Second, as the number of observed
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binaries increases and the fractional errors of the EOS prop-
erties decrease, the systematic uncertainties, mostly related to
the accuracy of NR calculations, will dominate. The average
numerical error from the simulations is ∼ 0.1 kHz, while the
average uncertainty for the identification of peak frequencies
is ∼ 0.2 kHz [13, 32]. Third, we ignored the effect of spins,
which can increase the total-mass error [33] and, therefore, the
effectiveness of the stacking method. They can also change f2
by 0.2 − 0.3 kHz in the most extreme cases [34, 35]. While
this is comparable to the NR uncertainty, it is important that
spin effects are properly incorporated in future simulations. 4

Finally, since both the imprint of EOS and the signals them-
selves may be weak, it will be important to utilize as much
of the signal as is meaningful for measuring the EOS param-
eters. This can be especially helpful owing to the possibility
that these parameters may have non-trivial covariances with
other parameters, such as their masses. EOS estimation would
therefore gain from exploring if the same EOS parameter val-
ues can explain consistently features in all parts of the wave-
form, specifically, the inspiral and the postmerger waveforms.
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