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We introduce an alternative type of quantum repeater for long-range quantum communication
with improved scaling with the distance. We show that by employing hashing, a deterministic en-
tanglement distillation protocol with one-way communication, one obtains a scalable scheme that
allows one to reach arbitrary distances, with constant overhead in resources per repeater station,
and ultrahigh rates. In practical terms, we show that also with moderate resources of a few hun-
dred qubits at each repeater station, one can reach intercontinental distances. At the same time,
a measurement-based implementation allows one to tolerate high loss, but also operational and
memory errors of the order of several percent per qubit. This opens the way for long-distance
communication of big quantum data.

PACS numbers: 03.67.Hk, 03.67.Lx, 03.67.-a

Introduction.— Long-range quantum communication
is a prominent application of emerging quantum technolo-
gies. It is a building block of quantum networks, with ap-
plications to secure channels [1–5], distributed quantum
computation [6–9] or distributed sensing [10, 11]. De-
spite the quantum mechanical limits of repeater-less dis-
tribution of quantum information [12, 13], schemes which
achieve the transmission of quantum information over
noisy channels have been suggested. One approach uses
quantum error correction (QEC), performed at regularly
spaced stations, to protect quantum information [14–
17]. Here the transmission is fast, however error thresh-
olds for channel noise and local operations are rather
stringent. Additionally, the overhead, i.e., the number
of qubits that need to be processed and stored locally,
are substantial, growing polylogarithmically with the dis-
tance. Entanglement-based quantum repeaters [18] (see
also [19–27]) present a viable alternative, where entangle-
ment is distributed over short distances, and a (nested)
combination of entanglement swapping and distillation is
used to create high fidelity entangled pairs over longer
distances. Using recurrence-type entanglement distilla-
tion with two-way classical communication [28, 29], one
obtains a scalable scheme with high noise tolerance for the
channel and local operations, polynomially growing local
resources and moderate rates [18]. The latter are mainly
caused by the classical communication waiting times in
entanglement distillation and can be overcome by using
entanglement distillation protocols (EDP) with one-way
communication [22].

Here, we present an alternative entanglement-based
quantum repeater scheme utilizing hashing [30, 31] – an
efficient, deterministic EDP with one-way classical com-
munication. This allows the replacing of the nested en-
tanglement purification and swapping of schemes based
on recurrence protocols by a non-nested scheme, leading
to an improved scaling of the required local resources with
the distance [32]. Our scheme can handle channel errors
and loss as well as operational and memory errors. It fea-
tures ultra-high rates and large error thresholds achieved
by a measurement-based implementation [15, 31, 33–35].
One-way classical communication also minimizes the re-

quired memory time, thereby reducing possible sources of
imperfections. More importantly, the overhead in local
resources, i.e., the number of ancillary qubits and oper-
ations needed at each repeater station per final qubit, is
constant, i.e., independent from the distance. This is in
stark contrast to previous schemes, where local resources
grow polylogarithmically, or even polynomially. Further-
more, one can combine this approach with a heralded
scheme to deal with arbitrary channel loss, the dominant
source of noise in fiber or free-space photon transmis-
sion. This paves way towards efficient long-distance big
quantum-data transmission, the essential ingredient in fu-
ture quantum networks [36].

Setting and scheme.— We consider the settings where
the quantum channel and the local processing of quan-
tum information are lossy and/or noisy. To circumvent
the problem of the absorption probability of the channel
(e.g. optical fiber connecting repeater stations) grow-
ing exponentially quickly in the distance, we divide the
channel into N segments of length l0 = L/N , over which
(noisy) Bell pairs are generated. One can also use her-
alded schemes to handle arbitrary (non-unit) channel
loss. We assume n such Bell pairs are generated over
each segment using nc parallel channels. The noisy Bell
pairs between two neighboring nodes are purified using
the hashing EDP [30], deterministically generating a frac-
tion of cn output pairs, where c depends on the initial
pairs entropy. The resulting pairs are connected at the
intermediate nodes via entanglement swapping, thereby
generating cn long-distance entangled pairs between the
end nodes. Given perfect local operations, hashing pro-
duces ideal pairs (asymptotically in n), that can be used
to yield perfect long-distance entangled pairs. Below we
show how a measurement-based implementation [31, 33]
allows us to obtain a scheme generating entangled Bell
pairs over arbitrary distances in the imperfect setting,
where only the end node noise limits the fidelity. All
operations are parallelizable, as only one-way classical
communication is required, and all Pauli correction oper-
ations, occurring in the protocol, can be postponed to be
performed just at the final outputs. The overall scheme
is summarized in Fig. 1. A purely QEC-based version
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without local two-way communication is also conceivable
[37].

FIG. 1. Illustration of a quantum repeater based on hashing.
The channel is divided into N elementary segments, where
short-distance entangled pairs are generated over all segments,
i.e., between all repeater stations, in parallel. Entanglement
distillation via hashing and entanglement swapping are per-
formed in a measurement-based way, by coupling the elemen-
tary pairs via Bell measurements to the locally stored resource
state. In contrast to quantum repeaters based on recurrence
protocols, no nesting is required. Direct encoded transmis-
sion would consist in sending encoded information sequen-
tially through the channel. Please note that this is only an
illustration, the real resource states contain at least order of
one hundred qubits.

Measurement-based hashing.— We now briefly de-
scribe the key elements of our scheme, hashing and its
measurement-based implementation, and discuss their
features ensuring the efficiency and functionality in noisy
settings.

Hashing distillation protocols operate collectively on a
large ensemble of n noisy Bell-pairs. In a single round, bi-
lateral CNOT operations between a subset of O(n) pairs
and a target pair are applied, and the target pair is mea-
sured. This reveals information about the remaining en-
semble, thereby purifying it. Repeating such rounds gen-
erates a fraction cn of perfect pairs deterministically in
the limit n→∞. The protocol thus has a non-zero yield
c in the noiseless case and only requires one-way classi-
cal communication. However, standard hashing fails if
operations are noisy. As O(n) operations act on a sin-
gle qubit, noise accumulates, washing out all information
[31]. We resolve this using a measurement-based imple-
mentation [31], where local noise up to 7% per qubit, for
imperfect resource states and imperfect measurements, is
tolerated.

In a measurement-based implementation, quantum in-
formation is processed by measurements rather than
gates [38, 39]. Similarly to teleportation, input qubits are
coupled to an entangled resource state via Bell measure-
ments, realizing the desired operation. For operations
that include only Clifford gates and Pauli measurements
– which is the case for EDP and entanglement swapping
protocols considered here– the procedure is deterministic
and the resource state consists of only input and output
qubits. In fact, qubits that are measured in the Pauli
basis (e.g., the target pairs in the hashing protocol) are
unnecessary – a modified, smaller, resource state suffices,
where the measurement results can be deduced from the
in-coupling Bell measurement outcomes. The resource
state corresponding to the hashing protocol has n input
and cn output qubits, as the hashing protocol maps n
Bell pairs to cn final pairs. The resource state at inter-
mediate repeater stations, which combines hashing and
entanglement swapping, is of size 2n (there are no out-
put qubits, as entanglement swapping is performed on cn

output pairs of the hashing protocol). This principle was
used in [33, 35] to obtain resource states of minimal size
for a recurrence-based repeater, and in [35, 40] the ex-
plicit construction of resource states for different tasks is
considered. The key feature, that even complex circuits
with many gates, can be implemented with a small re-
source state (in particular excluding qubits that are mea-
sured at any stage of the protocol) leads to a remark-
able robustness of measurement-based implementations
[15, 31, 33–35].

In a measurement-based approach, the noise is mani-
fest in imperfect resource states and Bell measurements.
We assume a local noise model for the resource states
where local depolarizing noise (LDN) is applied indepen-
dently to each of the resource qubits (see also [37]), as
in [15, 31, 33–35]. Such a model is faithful if resource
states are affected by local decoherence, or are them-
selves generated via distillation, as explained in [41] and
[42]. Furthermore, this model accounts for the fact that
generating entangled states of a larger number of qubits
is experimentally more demanding. The imperfect Bell
measurements are also modeled by local noise preceding
an otherwise perfect measurement. Memory errors, mod-
eled by local depolarizing noise, can also be accounted for
in this way.

When performing a Bell measurement, one can effec-
tively shift the noise between the two qubits [34, 35]. In
particular, one can (formally) move the noise from in-
put qubits of the local resource states onto the input
Bell pair qubits, see figure 1, resulting in perfect resource
states. Only noise on output qubits needs to be consid-
ered, which can be done afterwards. Hence, a noisy pro-
tocol is equivalent to a perfect protocol acting on more
noisy inputs, where the output state is subsequently af-
fected by local noise.

Repeater scheme in asymptotic noisy setting.— We
now apply these insights to our repeater protocol in a set-
ting where channels are lossy and noisy, entanglement dis-
tillation and Bell measurements are imperfect and mem-
ory errors for the storage of resource states or entangled
pairs are accounted for. All noise processes can be in-
cluded in noise acting on resource states, as argued above
(for details regarding memory errors see [37]).

Resource states that we use at intermediate repeater
stations have only input qubits, hence all noise can be
(formally) moved to input pairs. Thus perfect hashing
followed by perfect entanglement swapping is performed
on more noisy Bell pairs. As perfect hashing asymptoti-
cally produces perfect states, we are in a situation where
perfect Bell states are connected via entanglement swap-
ping. This leads to Bell states at the end nodes, which
are affected only by one-step local noise at the final sta-
tions. Note that the noise that acts at these final sta-
tions is independent from the distance, and is the only
factor which determines the final achievable fidelity, in
an asymptotic setting. The error threshold for the over-
all repeater scheme is the same as for measurement-based
hashing, up to 7% local noise per qubit.

Communication rates and multiplexing.— Our ver-
sion of the hashing protocol operates on n initial pairs,
generated over short distance with sufficiently high fi-
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delity. For instance, one can use a probabilistic (but her-
alded) scheme at this stage, where a pair is generated with
probability η. We denote the required time that involves
pair creation, photon transmission, classical communica-
tion time for heralding within an elementary segment by
t0. η includes channel loss and probabilistic interfaces,
and can in principle be arbitrary small. The time re-
quired for the local processing of the pairs (in our case,
the time to perform the Bell measurements) is denoted
by tp. In order to minimize the waiting time (and max-
imize the rate), we use nc parallel channels. Choosing
nc = n (1/η + ε) suffices to obtain an elementary pair on

n of these channels, except with probability O(e−ε
2n),

from which m = cn long-distance pairs are deterministi-
cally generated. We can choose ε = n−1/4, such that it
vanishes as n increases. We obtain m Bell pairs over all
N links within a single time step t0 with exponentially

increasing probability
(

1−O(e−ε
2n)

)N
. Only the classi-

cal communication time tc = L/cfiber (cfiber is the speed
of light in fiber) to transmit measurement outcomes de-
pends on the distance L. The rate per channel is then
given by R = cη

t0+tp
in the limit n → ∞. The classical

communication time tc does not enter because one can
already start to process new elementary Bell pairs once
the pairs from the previous round are processed. Note
that t0 can be made as small as the processing time by
making the elementary segments short enough. The rate
R is thus ultimately limited by cη

tp
, and thus by tp, which

is also the time scale which limits the rate of QEC-based
repeaters [14]. For more details and examples see [37].

Hashing and repeaters with finite number of copies n.—
So far we considered the scaling properties of the proto-
col in an asymptotic setting. Next, we show that for any
fixed channel length, a finite number of pairs suffices. For
this, we bound the fidelity of the resulting Bell pairs from
the basic hashing from below. With this, one can then
compute the fidelity of the final Bell pairs resulting from
our protocol, the required number of copies for a hashing-
based repeater, and the overall efficiency. Hashing pro-
duces m = cn resulting Bell pairs out of n initial/noisy
Bell pairs, which is also the number of final, long-distance
output pairs, as hashing is deterministic. The yield is
given by c = m/n = 1− S(W )− 2δ [30], where S(W ) is
the entropy of the ensemble of initial pairs and δ is a pa-
rameter which affects both the yield and the fidelity for
finite sizes. The overhead per pair at each repeater sta-
tion is determined by O = 4n/m as 2n qubits are needed
for the resource state and another 2n for the Bell pairs.
The overhead is thus given by O = 4(1 − S(W ) − 2δ)−1

and reaches the constant 4(1−S(W ))−1, which does not
scale with the distance L ∼ N , in the large n limit.

Next, we compute how the distance affects the final
pair fidelity, before the noise of the local devices acts on
the output pairs at the final repeater stations. This quan-
tity, called private fidelity, bounds the correlations which
an eavesdropper might have with the output pairs given
the last noise step is independent of the eavesdropper
[1, 5, 43]. Due to the measurement-based implementa-
tion we only need to analyze the scaling of the noiseless
setting. The hashing protocol succeeds with a probability
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FIG. 2. Plot of the global, private fidelity and yield as a
function of the number of initial pairs for δ = n−1/5 (a,b)

and δ = n−1/3 (c,d). F denotes the fidelity of the initial
Bell pairs, the number of repeater links is N = 100. We
assume local depolarizing noise of 1% per qubit. The fact
that the blue curve in (a) seems to starts “out of the blue” at
around n ≈ 600 is a consequence of the vanishing yield below
this number (see (b)). In the choice of δ there is tradeoff
between a higher fidelity (larger δ) and a higher yield (smaller
δ). Additional data for more links can be found in [37].

of 1−O(exp(−nδ2)) [30], provided that the fidelity of the
initial pairs is large enough (for Werner states the min-
imum fidelity is Fmin ≈ 0.8107). An appropriate choice
of δ, such as δ = n−1/4, ensures that the success prob-
ability approaches unity. For the quantum repeater to
succeed, the entanglement distillation processes at each
of the N segments have succeed. The number of links N
is proportional to the total length of the channel. For the
global, private fidelity of all m outputs, one then obtains
(see [37])

Fgp ≥ (1− αexp(−βnδ2))N ≈ 1−Nαexp(−βnδ2) (1)

where α and β are constants depending on the form of the
input Bell pairs (see also [37]). This shows that the choice
of the number n of initial pairs has to depend on N , and
therefore the length. While this number is increasing, the
overhead per transmitted qubit is constant. Choosing n
such that Nαexp(−βn1/2) < ε with ε small leads to Fgp

close to unity, i.e., Fgp ≥ 1 − ε. We note that, from a
practical perspective, one would however like to limit n,
as a resource state of size 2n needs to be stored at each
repeater station. The fidelity in eq. 1 is the fidelity of the
entire set of m output pairs relative to a tensor-product
state of m perfect pairs, and consequently, the same value
is a (lousy) bound for the final fidelity of the individual
pairs. From this one can also compute (a bound on) the
output fidelity by applying the local depolarizing noise
from the output qubits of the resource states.

For an illustration of the bounds on the global, private
fidelity and the yield c for different values of the fidelity
of the initial pairs for reasonable parameters, see Fig. 2.

We obtain the highest attainable fidelity if one mea-
sures all initial pairs except one, leading to a n → 1
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TABLE I. Comparison of key features of different quantum repeater architectures [14, 18, 22, 25] and our new protocol.

scheme Knill & Laflamme Briegel, Dür,
Cirac & Zoller

Hartmann, Kraus,
Briegel & Dür

Jiang, Taylor,
Nemoto, Munro,

Van Meter & Lukin

Zwerger, Pirker,
Dunjko, Briegel

& Dür
year 1996 1998 2007 2009 2017

based on QEC
Bell pairs &

two-way EDP
Bell pairs &

one-way EDP
Bell pairs &

QEC
Bell pairs &

hashing

scaling of
local resources

O (polylog(L)) O (poly(L)) O (poly(L)) O (polylog(L)) constant

rate
determined by

1
polylog(L)·tp

1
poly(L)·tc

1
poly(L)·max(tp,t0)

1
polylog(L)·max(tp,t0)

1
constant·max(tp,t0)

constraint
on loss

yes no no no no

hashing protocol. The performance of the n → 1 proto-
col is discussed in detail in [37]. The required number
of copies to achieve purification depends on the initial
fidelity of the pairs, where for channel noise of several
percent a few hundred copies suffice.

Comparison of approaches The main advantage of
our scheme over existing ones [14, 18, 22, 25] is the su-
perior scaling of the local resources with the distance,
which is reduced from polynomial [18, 22] or polyloga-
rithmic [14, 25] to constant. The robustness to opera-
tional errors is comparable for all approaches assuming
a measurement-based implementation [15, 31, 33]. Our
scheme shares the high tolerance of loss errors during
transmission with other entanglement-based quantum re-
peater architectures [18, 22, 25], which is due to the fact
that one can use heralded schemes to create the initial

Bell pairs. QEC-based schemes [14] are constrained, with
a fundamental limit of 50% loss tolerance imposed by the
no-cloning theorem [12]. The long distribution times of
the 1998 protocol [18] are avoided since hashing is a deter-
ministic one-way EDP. For a comparison of key features
of quantum repeater protocols see Table I. In [37] we also
compare the achievable rates and fidelities for our, and
the 1998 protocol [18] for a measurement-based imple-
mentation with 1% LDN, up to 104 links. We find that
the rates are up to nine orders of magnitude higher, and
anticipate that they are two to three orders of magni-
tude higher compared to what QEC based quantum re-
peaters [14] achieve. Thus our new scheme, beyond supe-
rior asymptotic performance, also yields better numbers
in real world regimes.

We note that since hashing protocols for the distilla-
tion of general graph states exist as well [44], the exten-
sion of our architecture to general multipartite quantum
networks [45] is straightforward.

Summary and conclusion.— We have constructed a
quantum repeater which operates with a constant local
overhead. This is in stark contrast to all previous long-
range communication proposals, which exhibit polyno-
mial or poly-logarithmical overheads in local resources.
This guarantees a non-zero yield, high rates and error
thresholds for resource states of several percent, and
opens the way for big data long-distance quantum com-
munication. The scheme requires only short-time quan-
tum memories for large resource states, and even inter-
continental distances can be reached using only a few
hundred qubits storage at each repeater station. The
protocol has a computational overhead – the determina-
tion of the local correction operations from the classical
hash functions, which is generally computationally ex-
pensive and might become relevant when the number of
pairs becomes very large [46]. Even this eventuality could
be circumvented by either using concatenated hashing of
moderate-sized blocks, as discussed above, or through dif-
ferent one-way entanglement distillation protocols (with
the same key features as hashing), based on e.g. effi-
ciently decodable low-density parity check codes [46, 47]

or Polar codes [48].

Our approach requires short-time storage of a number
of qubits at each repeater station which is, arguably, large
when compared to recent works focused on readily imple-
mentable settings. However, our scheme compensates by
overcoming many of the drawbacks of existing schemes: it
achieves high rates, makes repeaters fully scalable with a
small overhead, while being robust against realistic chan-
nel and memory errors, and loss.
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