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Using numerical simulations that mimic recent experiments on hexagonal colloidal ice, we show
that colloidal hexagonal artificial spin ice exhibits an inner phase within its ice state that has
not been observed previously. Under increasing colloid-colloid repulsion, the initially paramagnetic
system crosses into a disordered ice-regime, then forms a topologically charge ordered state with
disordered colloids, and finally reaches a three-fold degenerate, ordered ferromagnetic state. This
is reminiscent of, yet distinct from, the inner phases of the magnetic kagome spin ice analog. The
difference in the inner phases of the two systems is explained by their difference in energetics and
frustration.

Introduction. Artificial spin ice (ASI) systems have
been attracting increasing interest as frameworks for
studying frustration or degeneracy and for revealing
emergent exotic behaviors [1–3]. Among the most studied
ASIs are nano-scale magnets arranged in square [1, 4–
9], hexagonal [1, 10–13], or other geometries [14–21].
Each individual magnet behaves like a binary spin degree
of freedom and adopts, to a nearest-neighbor (NN) ap-
proximation, an ice-rule configuration that minimizes the
topological charge qn, defined as the absolute difference
between the n spins pointing in and no spins pointing
out of each vertex. This configuration can be ordered,
as in square ice [1, 4], or it can be a disordered mani-
fold with non-zero entropy density. Moving beyond the
NN approximation, inner phases and transitions appear
within the disordered ice manifold. In hexagonal ice, each
vertex is surrounded by vn = 3 spins and the ice rule cor-
responds to n = 1, no = 2 (qn = 2n− vn = −1) or n = 2,
no = 1 (qn = +1). In disordered hexagonal or kagome
ice, inner phases corresponding to charge ordering (CO)
within spin disorder (the “spin ice II” or SI2 phase) and
to long range order (LRO) have been reported [22, 23]
and experimentally investigated [10, 12, 24, 25].

Another interesting class of ASIs that resemble water
ice consists of an array of double-well traps that each
capture one particle, as illustrated in Fig. 1. The traps
are arranged in a square or hexagonal ice geometry with
vn = 4 or vn = 3 traps, respectively, around each ver-
tex, and the particle-particle interactions are repulsive.
Particle-based ASIs have been studied numerically for
colloids [26–32], skyrmions [33], and vortices in type-II
superconductors [34], and have been realized experimen-
tally in superconductors [35–38] and for paramagnetic
colloids on grooved surfaces [39–41].

Particle-based ASIs can be described in the same way
as magnetic spin ices by defining a pseudospin ~σi ly-
ing along the trap axis and pointing toward the particle
[26, 27, 34]. Although the particle and magnetic ASIs dif-
fer greatly both in energetics and frustration, both obey
the ice rules at low energy, though for different reasons

FIG. 1: Schematic of the particle-based hexagonal artificial
spin ice. Each double well trap (light grey) holds a single
paramagnetic colloid (dark grey dots). The hexagonal pla-
quettes contain arrows indicating the pseudospin ~σi of the
adjacent traps, colored according to the chirality χi = +1
(clockwise, dark grey) or χi = −1 (counter-clockwise, white).
The plaquettes are colored according to their net spin chi-
rality χ: clockwise (red), counter-clockwise (blue), or achiral
(grey). Colored disks are guides to the eye and indicate the
vertex type: n = 0 or 0-in (dark blue), n = 1 (light blue),
n = 2 (light red), and n = 3 (dark red); arrows (of length 2)
or dots (of length 0) on the disks indicate the vectorial sum
~si of the pseudospins adjacent to each vertex.

[27]. Consider for definiteness vn = 3 magnetic and col-
loidal hexagonal or kagome ASIs, which both obey the
ice rule through a local minimization of qn. The NN
energy En of magnetic dipoles impinging into a vertex
is proportional to the square of the charge, En ∝ q2n.
Thus the ice rule (qn = ±1 allowed and qn = ±3 forbid-
den) is enforced locally by energy minimization. For the
colloids, En ∝ n(n− 1), and the vertex energetics favors
large negative charges (qn = −3). Thus the ice rule obey-
ing particle-based ASI minimizes the global energy of the
system rather than the local energy, as in its magnetic
counterpart [27].
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An open question is how far the similarities between
the particle-based and magnetic ASIs extend. Here we
explore the types of ice rule states that occur in particle-
based ASI and how they relate to the CO and LRO of
magnetic systems. We simulate paramagnetic colloids
held gravitationally in double-well etched grooves, similar
to those used in recent experiments [40, 41]. The colloids
repel each other with interaction ∝ B2/r4 when a per-

pendicular magnetizing field ~B is applied. The strength
of the spin-spin interactions can be tuned easily by vary-
ing ~B, permitting us to map different ice phases. For
weak interactions the system is in a paramagnetic state
containing qn = ±3 charges, but we find that for higher
interaction strengths the system enters an ice-rule phase
with no qn = ±3 charges. As ~B is increased further, a
charge ordering regime emerges in which the colloids re-
main disordered, and the order gradually increases until
the system forms domains of three-fold symmetric ferro-
magnetic order.

Simulation– We conduct Brownian dynamics simula-
tions of the particle-based hexagonal ASI comprised of
Np = 2700 magnetically interacting colloids with diame-
ter 1µm placed in an array of Nt = 2700 etched double-
well grooves. There are Npl = 900 hexagonal plaquettes
of side ah = 3µm arranged on a 15 × 20 lattice with
dimensions of 135µm ×155.88µm, and we use periodic
boundary conditions in both the x and y directions. Each
plaquette is surrounded by six double-well traps of length
at = 2.8µm, as illustrated in Fig. 1, giving a total of
Nv = 1800 vertices. A confining spring force Fc1 acts
perpendicularly to the elongated direction of the trap,
and each end of the trap contains a confining parabolic
attractive well exerting force Fc2 with a spring constant
of 2.2pN/µm representing the gravitationally induced at-
traction. A repulsive harmonic barrier Fh of magnitude
2.11 pN corresponding to a barrier of height 3.32µm sepa-
rates the attractive wells. The combined substrate forces
are written as Fs = Fc1 + Fc2 + Fh. Magnetization
of the colloids in the z direction produces a repulsive
particle-particle interaction force Fpp(r) = Acr̂/r

4 with
Ac = 3 × 106χ2

mV
2B2/(πµm) for colloids a distance r

apart. Here χm is the magnetic susceptibility, µm is the
magnetic permeability, V is the colloid volume, B is the
magnetic field in mT, and all distances are measured in
µm. For the paramagnetic colloids in Ref. [40, 41], this
gives |Fpp| = 6.056 pN for r = 3µm at B = 40 mT, the
maximum field we consider. The dynamics of colloid i
are obtained using the following discretized overdamped
equation of motion:

1

µ

∆ri
∆t

=

√
2

D∆t
kBTN [0, 1] + Fipp + Fis (1)

where the diffusion constant D = 36000µm2/s, the mo-
bility µ = 8.895µm pN/s, the simulation time step
∆t = 1ms, and where N[0,1] is a Gaussian distributed

FIG. 2: Images of a small portion of the sample colored as in
Fig. 1, where the pseudospin arrows are replaced by an arrow
indicating the plaquette chirality direction or effective biasing
field Fb for chiral and achiral plaquettes, respectively. Dots
indicate that no Fb value can be assigned. (a) Paramagnetic
(PM) phase at B = 0 mT. Large red and blue disks indicate
qn = ±3 vertices with n = 3 and n = 0, respectively. (b)
Charge-free (ICE) phase at B = 13.2 mT containing only
qn = ±1 vertices. (c) Partially charge ordered (PCO) phase at
B = 24 mT with domains of charge and spin ordered vertices
and plaquettes. (d) Ferromagnetic (FM) phase at B = 40 mT
containing a grain boundary. The system contains a second
grain boundary with complementary chirality (not shown).

random number with mean 0 and variance 1. The first
term on the right is a thermal force consisting of Langevin
kicks of magnitude FT = 0.95 pN corresponding to a tem-
perature of t = 20◦C. Each trap is initially filled with a
single colloid placed in a randomly chosen well. We in-
crease B linearly from B = 0 mT to B = 40 mT, consis-
tent with the experimental range [39]. Unless otherwise
noted, we average the results over 100 simulations per-
formed with different random seeds. Around a hexagonal
plaquette, there is a pseudospin to the right and left of
each vertex. Considering the set of right pseudospins,
we define the pseudospin chirality χi = +1 if the pseu-
dospin is pointing toward the vertex and -1 otherwise.
The net chirality of each plaquette is χ =

∑6
i=1 χi/6,

as illustrated in Fig. 1. We assign a chirality direction
(clockwise or counter-clockwise) to each plaquette based
on the sign of χ. In the case of achiral χ = 0 plaque-
ttes, when possible we assign an effective biasing field ~Fb
to each plaquette representing the in-plane biasing field
that would have produced the same spin ordering.
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FIG. 3: (a) Fraction of ice rule obeying qn = ±1 vertices
Nn/Nv vs B, where Nn is the number of vertices with n “in”
pseudospins. Blue: n = 1, qn = +1; red: n = 2, qn = −1.
PM: paramagnetic; ICE: charge free; PCO: partially charge
ordered; FM: ferromagnetic. Labels A to D indicate the B
values illustrated in Fig 2. Dotted lines indicate approximate
transition locations; the ICE-PCO crossover field is not well
defined. (b) Fraction of qn = ±3 charged vertices vs B. Blue:
n = 0 with qn = −3; red: n = 3 with qn = +3. The charged
vertices disappear above B = 10 mT at the PM-ICE transi-
tion. (c) Charge ordering parameter c vs B.

Results– In Fig. 2, we illustrate the four phases exhib-
ited by the system. In the paramagnetic (PM) phase,
shown at B = 0 mT in Fig. 2(a), qn = ±3 charges are
present. At B = 13.2 mT in Fig. 2(b), we find a charge-
free (ICE) phase containing no qn = ±3 charges. Here all
the vertices obey the ice rules but there is no CO or ferro-
magnetic ordering. In Fig. 2(c) at B = 24 mT, a partially
charge ordered (PCO) phase appears in which the ver-
tices obey the ice rules and some CO arises in the form of
n = 2 vertices surrounding n = 1 vertices and vice-versa.
At B = 40 mT in Fig. 2(d), there is pronounced CO and
chiral plaquettes only exist along grain boundaries. This
ferromagnetic (FM) phase contains two domains with net

effective biasing field ~Fb 6= 0. Since there are six possi-
ble ~Fb orientations, the FM phase often exhibits domains
and grain boundaries.

In Fig. 3(a) we plot the fraction Nn/Nv of ice rule
obeying vertices with qn = ±1 versus B, and in Fig. 3(b)
we show the corresponding fraction of qn = ±3 vertices
versusB. ForB = 0 mT when the colloids do not interact
with each other, the vertices are randomly distributed,
giving N0/Nv = N3/Nv = 1/8 and N1/Nv = N2/Nv =
3/8. As B increases, there is a transition to N0/Nv =
N3/Nv = 0 near B = 10 mT when the system enters an
ice rule obeying state.

We introduce a charge order parameter c =

− 1
Nv

∑Nv

i=0

(
1
qin

∑
i∈∂i q

j
n

)
to measure the charge-charge

correlation among NN vertices. In a random system,
c = 1/3, while c = 1 in a CO state. In Fig. 3(c) we
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FIG. 4: (a) Fraction Nχ/Npl of plaquettes with chirality χ vs
B. Light red: χ = ±1/3; red: χ = ±2/3; dark red: χ = ±1;
black: χ = 0. The following pairs of curves overlap: χ =
±1/3, χ = ±2/3, and χ = ±1. The chirality first rearranges
and then disappears. (b) Total chirality X vs B.

plot c versus B showing that in the PM phase, c = 1/3,
and at the PM-ICE transition, c drops. In the ICE phase
(10 mT < B < 15 mT), c < 0.4 and the ice rule is obeyed.
For 15 mT < B < 30 mT in the PCO phase, c gradu-
ally increases, saturating to c = 0.9 in the FM phase for
B > 30 mT. Here c < 1.0 since the FM grain boundaries
disrupt the CO, as shown in Fig. 2(d) for B = 40 mT. In
magnetic ASI, a SI2 phase appears when the system has
CO but no spin ordering.

We plot the fraction Nχ/Npl of hexagonal plaquettes
with chirality χ versus B in Fig. 4(a). The number of
pseudospins with χi aligned in the majority direction is
4 for χ = ±1/3, 5 for χ = ±2/3, and 6 for χ = ±1,
while the χ = 0 plaquettes are achiral. At the ICE-PCO
crossover, N0/Npl increases, saturating to N0/Npl ≈ 0.9
in the FM phase. In Fig. 4(b) we plot the total chirality

fraction X = N−1pl
∑Npl

i=1 |χi| versus B. In the LRO chiral
phase in magnetic ASI [22, 23, 42], X increases from
X = 5/16 (random) to X = 2/3 (LRO). In Fig. 4(b),
X = 5/16 in the PM phase, reaches a local maximum in
the ICE phase, and is nearly zero in the FM phase. These
results indicate that the ICE and PCO ice rule obeying
phases in hexagonal colloidal ASI differ in nature from
the SI2 and LRO phases of magnetic ASI.

To characterize the FM spin ordering, we measure
the vertex spin-spin correlation for neighboring vertices,
g = 〈~si · ~sj〉, where the vertex spin ~si ≡

∑3
j=1 ~σj , the

sum of the surrounding pseudospins. Here, ~si points in
one of the three lattice directions and |~si| = 2 or 0. As
FM order appears, g increases. The average vertex spin
Sv = N−1v

∑Nv

i=0 |~si| saturates to Sv = 2 once all the
qn = ±3 charges disappear at the PM-ICE transition,
as shown in Fig. 5(a). We plot the total magnetization

M = N−1v |
∑Nv

i=0 ~si| versus B in Fig. 5(b). In the PM and
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FIG. 5: (a) Average vertex spin Sv vs B. When M = 2,
all the vertices obey the ice rules. (b) Total magnetization
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when FM grains emerge and grow.

ICE phases, M = 0, but above B = 20 mT, M increases,
saturating in the FM phase. The plot of g versus B in
Fig. 5(c) shows a similar saturation of g in the FM phase.
There are six possible FM orientations, so domains can
form as shown in Fig. 2(d) [43], with an average size that
increases as the rate of change of B decreases. It is pos-
sible for the FM domains to be arranged such that Sv
= 0, similar to what is observed in an FM material that
contains ordered domains but has no net magnetization.

Discussion– Although an ice manifold forms due to NN
vertex energetics, its inner phases are typically driven
by next-NN interactions [24]. In magnetic kagome ASI,
an anisotropic dipolar law governs the long range in-
teractions between in-plane spins, and it can be shown
through multipole expansion that CO arises from the mu-
tual Coulomb attraction of oppositely charged vertices.
The full dipolar interaction thus produces the LRO, and
the long range interaction tail generates the inner phases.
In contrast, our colloids interact isotropically through an
inverse-cube repulsion, and the phases arise not from lo-
cal energy minimization, but from an emergent, collective
behavior.

To understand the CO, consider the interaction of two
adjacent ice rule vertices with n = n1 and n = n2. Ap-
proximating the n colloids at each vertex as a composite
object located at the vertex center gives a vertex-vertex
interaction energy of Evv = n1n2B

2/a3h, which is min-
imized when n1 = n2 = 1, or when each vertex has
qn = −1. The local inter-vertex interaction disfavors
the formation of a CO state, so both the CO and the ice
manifold in colloidal ASI result from topologically con-
strained, global energy minimization, since it is impossi-
ble for all the vertices to have qn = −1. Starting from a
CO state of the type shown in Fig. 1(d), any rearrange-

ment that creates a pair of qn = −1 charges lowers the
energy locally by −B2/a3h, but also creates a nearby pair
of qn = 2 charges with a local energy increase of 3B2/a3h,
giving a net energy increase of 2B2/a3h.

The LRO can be viewed as an ordering of emergent
dimer spins. To establish an analogy between our system
and the magnetic ASI, we replace each trap with a double
occupancy trap plus a dumbbell of negative and positive
charges, written symbolically as — = 1

2 — + 1
2 — ,

where represents a “negative” colloid. In the ther-
modynamic limit, the energetics are determined by the
interaction between the spins ~σ = — , exactly as in
magnetic ASI, with no contribution from the double oc-
cupancy background. The LRO differs from that of mag-
netic ASI because the dimer spin interaction originates
from the colloidal interactions. For ideal dipoles this
leads to: E~σ1,~σ2

∝ [~σ1 · ~σ2 − 5(~σ1 · ~r12)(~σ2 · ~r12)] /r512.
This is similar to the magnetic dipolar interaction, but
with a 5 in the exponent and inner coefficient, which en-
hances the ferromagnetic coupling and permits the de-
velopment of ferromagnetic LRO, as described by the
“minority spin” argument of Ref. [23] using a different
interaction. If at = ah the colloids coalesce in the vertex,
producing CO but not LRO. Thus, the separation of the
CO and LRO phases increases as at/ah → 1.

Conclusion– We observe inner phases within the ice
manifold of hexagonal colloidal artificial spin ice using
a simulation that faithfully mimics experiment. These
phases originate from interactions between non-nearest-
neighbors, rather than simple vertex energetics, and dis-
appear for short-ranged interactions, explaining why they
were not observed previously. Both the inner phases
in disordered colloidal systems and the ice manifold of
colloidal artificial spin ice emerge from global collective
behaviors, rather than from the local energy minimiza-
tion found in magnetic kagome ice, producing many ad-
ditional types of frustration in the colloidal ice.
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