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Recently a large negative longitudinal (parallel to the magnetic field) magnetoresistance was
observed in Weyl and Dirac semimetals. It is believed to be related to the chiral anomaly associated
with topological electron band structure of these materials. We show that in a certain range of
parameters such a phenomenon can also exist in conventional centrosymmetric and time reversal
conductors, lacking topological protection of the electron spectrum and the chiral anomaly. We also
discuss the magnetic field enhancement of the longitudinal components of the thermal conductivity
and thermoelectric tensors.

One can distinguish two types of magnetoresistance
depending on the mutual orientation of the current and
the magnetic field: transverse and longitudinal. If the
magnetic field is sufficiently small, the magnetoresistance
can be described by the quasiclassical Boltzmann kinetic
equation (see for example [1–5]). A change in the trans-
verse resistance due to a magnetic field can be related to
the fact that electrons experience Lorentz force in that
direction. Since there is no Lorentz force in the direction
parallel to the magnetic field, the origin of the longi-
tudinal magnetoresistance is more complicated. More-
over, the longitudinal magnetoresistance is absent in the
approximation of a spherical Fermi surface, and in the
relaxation time approximation [1]. Although no theo-
rem was proven, so far all results based on the conven-
tional Boltzmann kinetic equation correspond to positive
longitudinal magnetoresistance, (see for example Refs. 5
and 6 and references therein). Nielsen and Ninomiya [7]
suggested a chiral anomaly-related [8, 9] mechanism of
negative longitudinal magnetoresistance (NLMR) in ma-
terials with massless Dirac and Weyl electronic spectra,
which recently attracted great theoretical interest [10–
13]. The calculations of Ref. 7 were done in the ultra-
quantum limit at zero temperature, and in the case where
the chemical potential is at the Dirac point. However, in
most of existing Dirac and Weyl semimetals the chemical
potential is located away from the Dirac points. In this
case a quasiclassical description of the chiral anomaly-
related NLMR was developed in Refs. 14 and 15. It
was shown that the existence of strong NLMR requires a
large ratio between the chirality and transport relaxation
times. Recently large NLMR was observed both in Weyl
and in Dirac materials (see for example Refs. 13, 16–20).

In Weyl semimetals the gapless character of the elec-
tron spectrum is protected by topology. In Dirac metals
the massless Dirac points are protected only by the crys-
talline symmetry. Therefore a small lattice distortion of
a Dirac semimetal can open a gap in the electronic spec-
trum making it non-topological. Below we consider mag-
netoresistance in Dirac-type materials in which the elec-
tron spectrum is either massless or has a small gap. Ex-
istence of a small gap in a Dirac semimetal was reported
already in the first observation of NLMR in these ma-
terials [16]. Furthermore, NLMR was observed in Weyl

materials in which the Weyl valleys merge into a sin-
gle electron pocket with zero net topological charge [21].
This implies that existence of massless Dirac points in
the spectrum, their topological protection and the chiral
anomaly are not necessary ingredients of large NLMR.

In this article we show that a negative contribution
to the longitudinal magnetoresistance and other longitu-
dinal magnetotransport phenomena exists even in con-
ventional centrosymmetric and time-reversal symmetric
semiconductors and metals. However, for this contribu-
tion to dominate the effect a certain hierarchy of relax-
ation times should take place.

To illustrate the origin of the effect we consider a model
[22] where the energy gap Eg between between the con-
duction and the valence bands is significantly smaller
than the energy separation from other bands, and the ex-
ternal potential V (r) is smooth on the interatomic scale.
In this case the electron dynamics may be described by
the Dirac Hamiltonian (for a recent review see Ref. 23)

Ĥ = up · σ τ3 + Egτ1 + V (r). (1)

Here, p = −i~∇ − e
cA(r) (with A(r) being the vector

potential) is the kinematic momentum, Eg is half the
band gap, and σi and τi denote the Pauli matrices that
act in the spin and chirality subspaces respectively.

We focus on the typical situation in which the elec-
tron chemical potential µ is larger than the gap Eg. In
this regime electron transport my be described by two
equivalent approaches. The first one is based on the qua-
siclassical kinetic equation, while in the second one the
free electron motion is described in terms of the Lan-
dau levels. Here we will use the latter approach. In a
uniform magnetic field B directed along z-direction the
energy spectrum of Eq. (1) has the form (see for example
§ 32 of Ref. 24)

ε2n(pz) = E2
g + u2p2z +

u2~2

l2B
(2n+ 1 + σ) . (2)

Here pz is the electron momentum along the magnetic
field, lB =

√
~c/|eB| is the magnetic length, n = 0, 1, 2...

labels Landau levels, and σ = ±1 is a spin index.
At Eg = 0 the Hamiltonian (1) decouples into a sum

of Weyl Hamiltonians describing right- and left-handed
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FIG. 1: Landau level spectrum of the Dirac equation in the
gapless case, Eg = 0 [panel a) ] and gapped case [panel b)]. All
Landau levels except the lowest one are degenerate in helicity and
are shown by solid blue lines. The lowest Landau level is
nondegenerate. The helicity of electronic states in it is indicated
by the line style: Positive helicity states are shown by the green
dashed line, and negative helicity states – by the black
dash-dotted line. The red horizontal line indicates the location of
the chemical potential.

chiral fermions. As a result, the electronic states can be
classified by chirality (R and L), τ3ΨR = ΨR, τ3ΨL =
−ΨL. All Landau levels except the lowest one (n =
0, σ = −1) are double degenerate. The electron states
in these levels consist of opposite chirality pairs. The
spectrum of the lowest Landau level consists of two non-
degenerate linear branches, ε0 = ±upz, formed by the
states with opposite chirality. As a result, in the presence
of electric field the system exhibits the chiral anomaly
[7–9]. Acceleration of the electrons by the electric field
creates a population imbalance of electrons with different
chirality. Since the Hamiltonian Eq. (1) decouples into a
pair of chiral (L and R) Weyl Hamiltonians in the pres-
ence of an arbitrary potential V (r), scattering by disorder
does not relax the chirality imbalance. Therefore, even
at full momentum relaxation of the electron distribution
with a given chirality there is an a finite electric current
proportional to the chirality imbalance (chiral magnetic
effect) [25, 26]. In this approximation the electrical con-
ductivity is infinite.

At Eg 6= 0 chirality is no longer conserved as the sec-
ond term in Eq. (1), Egτ1, couples the Weyl fermions
with opposite chirality. However, the helicity operator
α̂ = p · σ/p still commutes with the Hamiltonian of the
free electron motion described by the first two terms in
Eq. (1). Thus, the states of the free electron motion
may be classified by the helicity eigenvalues, α = ±1 (at
Eg = 0 helicity of free electron states coincides with chi-
rality up to the sign of the electron energy). Note that
this classification applies even in the presence of a mag-
netic field since the operator p · σ is still diagonal in the
basis of energy eigenstates. The quantity p in the defini-
tion of helicity should be understood as the modulus of
the eigenvalue of this operator. The helicity content of
Landau level states is shown in Fig. 1. The states in the
doubly degenerate Landau levels come in opposite helic-
ity pairs, while the helicity of states in the non-degenerate
lowest Landau level is given by α = sign(pz).

Although at Eg 6= 0 there is no chiral anomaly, the
mechanism of longitudinal magnetoresistance is quite

similar to that due to the chiral anomaly. Namely, the ac-
celeration of electrons by the electric field directed along
B produces helicity imbalance. The helicity imbalance
in turn produces an electric current even at full momen-
tum relaxation within a population of electrons with the
same helicity. In contrast to chirality, helicity is not con-
served by disorder scattering. Nevertheless, if the Fermi
energy EF strongly exceeds the gap Eg the helicity re-
laxation rate is parametrically small. As is shown in the
supplementary materials (SM), in this regime the helicity
relaxation time τh(ε) may be expressed in terms of the
transport mean free time τtr(ε) as

τh(ε)

τtr(ε)
= ξ

4ε2

E2
g

� 1. (3)

Here ξ is a numerical coefficient of order unity which de-
pends on the angular dependence of the impurity scatter-
ing cross-section. In the Born approximation it is given
by Eq. (A7) in the Appendix. Below we develop a theory
of electron magnetotransport phenomena in the leading
approximation in τtr/τh.

In the regime τtr/τh � 1, during a short time τtr
the electron distribution becomes isotropic in momen-
tum and becomes dependent only on the electron energy
ε and helicity α = ±1, i. e. takes the form nα(ε). Then
the total electron density n is given by

n =
∑
α

∫
dεν(ε)nα(ε), (4)

where να(ε) is the density of states with helicity α. In the
leading approximation in τtr/τh the equations describing
electronic transport have the form, see Appendix B,

∂tnα(ε) = −∇ · jα(ε)

να(ε)
− kα
να(ε)

e2E ·B
h2c

∂εn
(0)
α (ε)

−nα(ε)− n−α(ε)

τh(ε)
+ Iinα {nα(ε)}, (5)

where h = 2π~ and kα = α. The collision integral due to
inelastic electron-electron and electron-phonon scattering
processes, is denoted by Iinα {nα(ε)}, and we expressed the
collision integral due to impurity scattering in terms of
the helicity relaxation time, see Eq. (A4). Finally,

jα(ε) =
ekαnα(ε)

h2c
B (6)

denotes the density of particle current with helicity α per
unit energy [25, 26]. The electric current j and the heat
flux jq may be expressed as

j = e
∑
α

∫
dε jα(ε), jq =

∑
α

∫
dε(ε− µ) jα(ε), (7)

where µ is the chemical potential.
Note that in the limit τtr(ε)/τh(ε) → 0 both the

current jα(ε) and the helicity pumping are associated
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only with the lowest Landau level. Accordingly, the
second term in the right hand side of Eq. (5) can be

written as dpz
dt

νL(ε)
ν(ε)

dε0(pz)
dpz

∂n(ε)
∂ε , where dpz

dt = eEz, and

νL(ε) = 1
2πhl2B

dpz
dε0(pz)

is the density of states of the chiral

Landau level (here the derivative dε0(pz)
dpz

is evaluated at

ε0(pz) = ε). Then elastic scattering redistributes the he-
licity imbalance created by the electric field between the
electron states with a given energy in all Landau levels.
This is the reason why there is a density of states in the
denominator in the first and the second terms in the right
hand side of Eq. (5).

Equations (5)-(7) coincide with those obtained in
Refs. 14 and 15 for Weyl semimetals with topologically
protected gapless electron spectrum. In Weyl semimetals
kα = ±1 is given by the quantized monopole charge of
the Berry curvature flux and Eq. (5) describes the chiral
anomaly. The above consideration shows that both gen-
eration of helicity imbalance due to the acceleration of
electrons by the electric field described by Eq. (5), and
the current proportional to helicity imbalance, Eq. (6),
exist in generic conductors with no topological protection
of the electron spectrum.

Below we discuss longitudinal magnetotransport phe-
nomena: NLMR, enhancement of thermal conductivity
and the thermoelectric effect by a magnetic field. Gener-
ally speaking, linear response phenomena are character-
ized by tensor transport coefficients. Equations (5)-(7),
on the other hand, describe only the “anomalous” con-
tributions to the transport coefficients which affect only
the zz components of the tensors. Here ẑ is the direction
of the magnetic field.

Using Eq. (5) and assuming that nα(ε) = nF (ε) +
δnα(ε), where nF (ε) = [e(ε−µ)/T (r) + 1]−1 is the locally-
equilibrium Fermi distribution function, we get

Iinα {nα(ε)} =
δnα(ε)− δn−α(ε)

τh(ε)
+

ekα
(
eE − ε−µ

T ∇T
)
·B

να(ε)h2c
∂εnF (ε). (8)

Note that although both terms in the right hand side
are odd in kα their effect on the nonequilibrium distri-
bution function is drastically different. Only the first
term creates the helicity imbalance whereas the second
term creates an energy imbalance between the electron
populations with different helicities. The inelastic col-
lisions relax this energy imbalance but not the helicity
imbalance. As a result the nonequilibrium distribution
function may be written in the form

δnα(ε) =
ekα

(
τeff

ε−µ
T ∇T − τh(ε)eE

)
·B

2να(ε)h2c

dnF (ε)

dε
.

(9)
Here 1/τeff is the effective rate of energy transfer be-
tween the electron populations with opposite helicity.
Treating the inelastic collision integral in the relaxation
time approximation we may express it as

1/τeff = 1/τh + 1/τε, (10)

where 1/τε is the inelastic relaxation rate.
Substituting Eq. (9) into Eqs. (6) and (7) and express-

ing the electric current and energy flux densities in the
form (

j
jq

)
=

(
σ̂ β̂

γ̂ ζ̂

)(
E
∇T

)
(11)

we obtain the following expressions for the zz compo-
nents of the transport tensors

σzz =

(
e2B

h2c

)2 ∫
dε

(
−dnF (ε)

dε

)
τh(ε)

να(ε)
, (12a)

βzz =

(
eB

h2c

)2 ∫
dε
e(ε− µ)

T

dnF (ε)

dε

τeff (ε)

να(ε)
, (12b)

ζzz =

(
eB

h2c

)2 ∫
dε

(ε− µ)2

T

dnF (ε)

dε

τeff (ε)

να(ε)
. (12c)

By the Onsager symmetry principle γzz = −βzzT . The
electronic contribution to thermal conductivity κzz may
be expressed in terms of the electrical conductivity σzz
and other transport coefficients in Eq. (12) as [1] κzz =
−ζzz−Tβ2

zz/σzz. Since at high temperatures the consid-
ered effects are small we concentrate on the low temper-
ature regime T � µ. In this case Eqs. (12) simplify to

σzz(µ) =

(
e2B

h2c

)2
τh(µ)

ν(µ)
, (13a)

ζzz(µ) = −π
2T

3e2
τeff (µ)

τh(µ)
σzz(µ), (13b)

βzz(µ) = e
dζzz(µ)

dµ
. (13c)

Under the conditions specified above, the results in
Eq. (13) are valid not only for Weyl and Dirac materials,
but also for conventional conductors. In the case of Weyl
and Dirac semimetals these equations reproduce results
obtained in Refs. [14, 15]. The difference between the
conventional time- and centrosymmetric materials and
Weyl semimetals is in value of the helicity relaxation time
τh. In non-centrosymmetric Weyl semimetals with spin-
nondegenerate electron spectrum the large value of τh/τtr
may be associated with the fact that for smooth disor-
der potential their inter-valley transitions associated with
large momentum transfer are suppressed. In conventional
conductors the large value of τh/τtr arises from the large
ratio of the Fermi energy to the band gap Eg � µ, as
described by Eq. (3). Taking ν(µ) = µ2/~3u3 we get

σzz
σD
∼
(
~ueB
cµEg

)2

∼
(
~ωc
Eg

)2

. (14)

Here σD = 2e2νD, with D = u2τtr/3 being the intra-
valley diffusion coefficient, is the Drude conductivity, and
ωc ∼ eBu/cµ is the cyclotron frequency. Equation (14)
may be considered as an upper bound estimate for the
magnitude of NLMR. The presence in the material of
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short range impurities, which can not be described by
Eq. (1), decreases the magnitude of the effect.

Of course there are other, “conventional” contribu-
tions to the longitudinal magnetoresistance associated
with the Fermi surface anisotropy (see for example Ref. 6
and references therein). Typically at small magnetic
field these contributions to magnetoconductivity scale
as (σzz(B) − σ(0)) ∼ χσ(0)(ωcτtr)

2, and saturate at
ωcτtr ∼ 1. Here χ < 1 is a parameter characterizing
the Fermi surface anisotropy. Thus, the condition for
Eq. (14) to dominate the LMR is

χ(Egτtr/~)2 < 1. (15)

Even if this condition is not satisfied the negative contri-
bution to the magnetoresistance, Eq. (14) can dominate
at high magnetic fields where the conventional contribu-
tion saturates. In this case the longitudinal magnetoresis-
tance is a non-monotonic function of the magnetic field.
We note that a non-monotonic B-dependence of σzz at
low magnetic field was observed in most of experiments
on Dirac and Weyl metals.

In experiments on Dirac semimetals the observed mag-
netoconductance was a few times greater than the Drude
value of the conductivity at B = 0. According to Eq. (14)
this may happen if ~ωc/Eg > 1. Note that in the quasi-
classical limit ~ωc � µ. Then to have a big effect one
should have µ� Eg.

We would like to point out an important physical dif-
ference between the expressions for the magnetoconduc-
tivity σzz in Eq. (12a) on the one hand, and κzz and
the thermoelectric αzz in Eqs. (12b) and (12c) on the
other hand. The magnetoconductance in Eq. (12a) is
controlled by the helicity relaxation time τh, while the
magnetic field dependence of the thermoelectric coeffi-
cient and thermal conductivity are controlled by τeff ,
which is a combination of the helicity relaxation time τh
and the inelastic relaxation time τε. Thus, according to
Eq. (13b) the Wiedemann-Franz law is violated at high
temperatures where τeff � τ . Furthermore, despite the
conventional form of Eq. (13c) the Mott relation also does
not hold, βzz(µ) 6= −π2T/(3e)∂µσzz(µ). The aforemen-
tioned difference and, consequently, the violation of the
Wiedemann-Franz and Mott relations, can be traced to
the difference in the physical processes which determine
magnetoconductance σzz(B), and the magnetic field de-
pendence of ζzz(B), and βzz(B). The magnetoconduc-
tance is controlled by the long relaxation time τh of he-
licity imbalance at the Fermi level, which is created by
the acceleration of the electrons in the lowest Landau
level in the presence of the electric field. This is similar
to the chiral anomaly. As long as T � µ and τh slowly
depends of the electron energy, the temperature depen-
dence of the negative longitudinal magnetoresistance is
weak. This explains why NLMR was observed up to rel-
atively high temperatures. In contrast, the temperature
gradient does not create helicity imbalance, but only pro-
duces an energy imbalance between the electron popula-
tions with opposite helicity. The relaxation of the energy

imbalance is governed by the time τeff , which at τh > τε
coincides with the inelastic relaxation time, τeff ≈ τε. As
a result, the thermal conductivity and the thermoelectric
coefficient exhibit a strong temperature dependence. In
the “hydrodynamic” regime where τtr � τε the described
above contributions κzz(B) and αzz(B) become negligi-
ble compared to the conventional contributions. Thus the
dependence thermal conductivity and the thermoelectric
coefficient on the magnetic field is unrelated to the chiral
anomaly.

In conclusion, we have shown that positive contribu-
tions to the parallel magneto-conductance σzz(B), the
magnetic field dependent parallel thermal conductivity
and the thermoelectric coefficient βzz(B) can exist not
only in Weyl and Dirac semimetals, but also in con-
ventional cento-symmetric conductors as well. We also
would like to mention that the magnetic field dependence
of the sound absorption coefficient exhibits similar prop-
erties [15]. We also expect that, similarly to the nega-
tive magnetoresistance of pn-junctions in Weyl semimet-
als [27], the magnetoresistance of pn-junctions in Dirac
semimetals with a sufficiently small gap Eg will also be
negative.

Our consideration focused on the quasiclassical regime
~u/lB � µ. In the ultra-quantum limit, ~u/lB � µ,
when only the zeroth Landau level is occupied the situa-
tion is more complicated. In Weyl semimetals in the sin-
gle particle approximation an expression for conductivity

in this regime was obtained in Ref. 7, σzz ∝ e2u
4π~l2B

τh. A

similar result can be obtained for degenerate Dirac met-
als in the ultra-quantum regime. The magnetic field de-
pendence of the longitudinal magnetoresistance in this
regime is controlled by the corresponding magnetic field
dependence of the helicity relaxation rate. The latter
depends on the type of impurities. Its evaluation is not
essentially different from the calculation of the backscat-
tering rate in conventional semiconductors in the ultra-
quantum limit. In the context of conventional semi-
conductors in quantized magnetic field there is also a
strongly anisotropic contribution to magnetoresistance,
unrelated to the chiral anomaly, which may become
negative in the longitudinal direction (see for example
Refs. 28–32). It is related to the fact that in the pres-
ence of smooth potential in quantized magnetic field the
small angle scattering is suppressed. An additional diffi-
culty in interpreting magnetotransport measurements in
the ultra-quantum regime is associated with the instabil-
ity of the electron liquid with respect to charge density
wave formation, which drives the system to the insulat-
ing state. In contrast, in the semiclassical limit, the the-
oretical consideration of electron transport is free of the
aforementioned complications.
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