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We show that Ramsey spectroscopy of fermionic alkaline-earth atoms in a square-well trap provides
an efficient and accurate estimate for the eigenspectrum of a density matrix whose n copies are stored
in the nuclear spins of n such atoms. This spectrum estimation is enabled by the high symmetry
of the interaction Hamiltonian, dictated, in turn, by the decoupling of the nuclear spin from the
electrons and by the shape of the square-well trap. Practical performance of this procedure and
its potential applications to quantum computing and time-keeping with alkaline-earth atoms are
discussed.

The eigenspectrum of a d-dimensional density matrix ρ̂
of a system characterizes the entanglement of the system
with its environment [1]. As it gives access to quantities
such as purity, entanglement entropy, and more generally
Renyi entropies, the eigenspectrum is an indispensable
tool for studying many-body quantum states and pro-
cesses in general and quantum information processors in
particular [2, 3]. A strategy to estimate the spectrum
specifies the measurements to be performed on n copies
of ρ̂, along with a rule that specifies the estimated spec-
trum given measurement outcomes. It is natural that
an optimal measurement should be invariant under arbi-
trary permutations [symmetry group Sn] and arbitrary
simultaneous rotations [symmetry group SU(d)] of all n
copies. The well-known empirical Young diagram (EYD)
algorithm involves a single joint entangled measurement
on all n copies which satisfies these symmetries, by pro-
jecting onto irreducible representations of Sn×SU(d)[4–
9]. In this Letter, we show that Ramsey spectroscopy
on n fermionic alkaline-earth atoms stored together in a
square trap can be used for spectrum estimation. We
require each atom to have a copy of ρ̂ stored in the d-
dimensional nuclear spin. Then spatially uniform Ram-
sey pulses between electronic states result in a joint mea-
surement with Sn × SU(d) symmetry, reminiscent of the
EYD measurement.

Two unique features of fermionic alkaline-earth atoms
are the metastability of the optically excited state |e〉 =
3P0 and the decoupling of the nuclear spin from the
(J = 0) electrons in both the ground state |g〉 = 1S0

and in |e〉. Thanks to these two features, alkaline-earth
atoms have given rise to the world’s best atomic clocks
[10, 11] and hold great promise for quantum informa-
tion processing with nuclear and optical electronic qubits
[12–17] and for quantum simulation of two-orbital, high-
symmetry magnetism [18–23]. Spectrum estimation of ρ̂,
using a copy of ρ̂ stored in the nuclear spin of each of
n |g〉 atoms, would be of great value in all of these ap-

plications. First, it can determine whether ρ̂ describes a
pure state, in which case the fermions would be identical
and s-wave scattering would not interfere with clock op-
eration. Second, it can be used to assess how faithfully
the nucleus stores quantum information as one manipu-
lates the electron [12, 13, 16]. Finally, this procedure can
be used to characterize the entanglement of a given nu-
clear spin with others in a many-atom state obtained via
evolution under a spin Hamiltonian [18–24]; this would
require n copies of the many-atom state.

As illustrated in Fig. 1(a), to estimate the spectrum
of ρ̂, whose n copies are stored in the nuclear spins of n
|g〉 atoms, we transfer all n atoms into a single square
well, with at most one atom per single-particle orbital.
For sufficiently weak interactions, due to energy conser-
vation and the anharmonicity of the trap, the n occupied
orbitals of the well remain unchanged throughout the ex-
periment and play the role of individual sites. Thanks to
the decoupling of the d-dimensional nuclear spin from the
electrons, s-wave interactions give rise to a spin Hamilto-
nian with nuclear-spin-rotation SU(d) symmetry [18, 19].
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FIG. 1. Spectrum estimation with alkaline-earth atoms. (a)
n copies of a d-dimensional density matrix ρ̂ are stored in the
nuclear spin of n fermionic alkaline-earth atoms trapped in a
single square-well trap and prepared in their ground electronic
state |g〉. (b) A Ramsey sequence is applied consisting of two
pulses of area β and −β, respectively, coupling |g〉 to the first
excited electronic state |e〉. (c) The number 〈n̂e〉 of e atoms
is measured for different dark times τ (red circles) between
the pulses, allowing one to extract the spectrum of ρ̂.
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Furthermore, the interaction strength between square-
well orbitals labeled by positive integers p 6= q is propor-
tional to

∫ π
0

dx sin2(px) sin2(qx) = π/4 and is thus inde-
pendent of p and q, giving rise to the site-permutation
symmetry Sn [25]. Critically, the resulting Hamiltonian
has Sn × SU(d) symmetry.

Remarkably, the independence of the interaction
strength on p and q also makes the motional tempera-
ture of the atoms irrelevant.

Our Ramsey protocol begins with the initial state of
the n-atom system |G〉〈G| ⊗ ρ⊗n, where |G〉 = |g . . . g〉
and each nuclear spin is in the same state ρ̂. The
first Ramsey pulse of area β between |g〉 and |e〉 [Fig.
1(b)] is implemented over short time tP = β/Ω (so
that interactions can be ignored), using Hamiltonian
ĤP = Ω

2

∑n
k=1

(
σ̂keg + σ̂kge

)
with Rabi frequency Ω and

σ̂kµν = |µ〉k〈ν|k. Since s-wave e-e interactions are lossy
[21], we assume that the trapping of |e〉 atoms is tem-
porarily loosened during the dark time τ [15], so that
only g-g interactions contribute via the spin Hamiltonian

ĤD = U
∑
j<k

σ̂jggσ̂
k
gg(1− ŝjk)− δ

∑
k

σ̂kee. (1)

In the supplement we discuss the approach with
a more general Hamiltonian [26]. Here ŝjk =∑d
r,r′=1 |r〉j|r′〉k 〈r′|j〈r|k exchanges nuclear spins on sites

j and k (so two identical fermions indeed do not s-
wave interact), δ is the detuning of the Ramsey-pulse
laser from the g-e transition, U = 4π~aggω⊥/L, agg is
the s-wave g-g scattering length, L is the length of the
square well, and ω⊥ is the frequency of the potential that
freezes out transverse motion of the atoms [25]. After
the second Ramsey pulse of area −β, the state is ρ̂′ =
Ŵ †V̂ Ŵ |G〉〈G|ρ̂⊗n(Ŵ †V̂ Ŵ )†, where Ŵ := exp[−itP ĤP ]
and V̂ := exp[−iτĤD]. Finally, the number of |e〉 atoms
〈n̂e〉 = Tr [n̂eρ̂

′] is measured, where n̂e =
∑
j σ̂

j
ee.

We envisage starting with m×R sets of n atoms, each
with nuclear spin state ρ̂. We denote the eigenspectrum
of ρ̂ as ~p = (p1, p2, . . . , pd), ordered for future conve-
nience as p1 ≥ p2 ≥ · · · ≥ pd. For each dark time
τ1, τ2, . . . τR, we repeat the Ramsey protocol m times
and compute the average [Fig. 1(c)] to yield estimates
of 〈n̂e(τ1, ~p)〉, 〈n̂e(τ2, ~p)〉, . . . 〈n̂e(τR, ~p)〉. Our key finding
is that ~p can be inferred by fitting the measured values
to a pre-calculated expression of the mean number of e
atoms 〈n̂e(τ, ~p)〉.

Although our approach is valid for all n, as n increases,
the distribution of measurement outcomes n̂e/n becomes
tightly peaked about its expectation value 〈n̂e〉/n given
by the following expression in the large n limit:

〈n̂e(τ, ~p)〉
n

=
sin2 β

2

[
1−

d∑
r=1

pr cos (ωrτ)

]
+ Õ

(
1√
n

)
, (2)

where ωr = U(n− 1)(1− pr) cos2 β
2 + δ. We use the no-

tation that a tilde over the O indicates that we ignore

logarithmic factors. Therefore the number of required
repetitionsm decreases with n, making our approach par-
ticularly appealing in the regime of large n [see Fig. 2(a)].

The limiting cases of Eq. (2) are easily understood.
Indeed, Rabi π-pulses (β = π) give zero since ĤD →
−nδ, so Ŵ †V̂ Ŵ = exp[inδτ ]. Similarly, 〈n̂e〉 = 0 in the
absence of Rabi pulses (β = 0) since no |e〉 atoms are ever
created. If ρ̂ describes a pure state, in which case one of
the pr is unity while the rest vanish, the interaction U
drops out (as it should for identical fermions) and we
recover the familiar non-interacting expression.

EYD spectrum estimation.—Before presenting the
derivation of the number of e atoms, 〈n̂e(τ, ~p)〉, it is use-
ful to review the original EYD spectrum estimation algo-
rithm. For the familiar case of qubits (d = 2, or, equiva-
lently, spin-1/2), the EYD algorithm can be stated as:

Letting (p, 1 − p) with p ≥ 1/2 be the spectrum of
ρ̂, in the limit n → ∞, a single measurement on ρ̂⊗n

of the total spin Ŝ2 [with possible outcomes S(S + 1)
with nonnegative S = n/2, n/2−1, . . . ] gives an outcome
satisfying p = 1/2 + S/n+O(1/

√
n).

This result follows from the fact that for large n the
measurement outcome distribution Pr(S|n, p) becomes
peaked with mean and standard deviation (p−1/2)n and√
p(1− p)n to leading order in n, as shown in Fig. 2(b)
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FIG. 2. (a) For spectrum ~p = (0.7, 0.2, 0.1) and n = 30, we
compare the true expectation value 〈n̂e(τ, ~p)〉/n (solid line)
with that estimated using mean-field theory (dashed line).
The blue region indicates outcomes that are within one stan-
dard deviation of 〈n̂e(τ, ~p)〉/n, where the standard deviation
is estimated using the mean field result Eq. (5). (b) The nor-
malized probability distribution Pr(S|n, p) for measurement
outcome S (and the estimate S/n+ 1/2 for p) for n = 30 and
n = 300 copies of ρ̂ with spectrum (p, 1− p) with p = 0.8. (c)
For n = 30, the probability distribution is shown for different
outcomes (λ1, λ2, n− λ1 − λ2) given spectrum (0.7, 0.2, 0.1).
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FIG. 3. The Young diagrams ~λ = (λ1, λ2, ..., λd) for n = 6,
d = 3. With all atoms in |g〉, the interaction Hamiltonian

〈G| ĤD |G〉 = U
∑

j<k(1 − ŝjk) has Sn × SU(d) symmetry

and is therefore diagonal in ~λ-subspaces. The energy in
〈G| ĤD |G〉 is displayed above each Young diagram. Notice
two of the Young diagrams correspond to the same energy.

[26]. Note that the measurement operator Ŝ2 has symme-
try group Sn×SU(2). The action of this symmetry group
within each eigenspace of Ŝ2 corresponds one-to-one to a
distinct irreducible representation of Sn × SU(2).

This generalizes to arbitrary d. Thanks to Schur-Weyl
duality [27], the irreducible representations (irreps) of
Sn × SU(d) in the dn-dimensional nuclear-spin Hilbert
space H of n atoms are in one-to-one correspondence
with d-row Young diagrams ~λ = (λ1, λ2, . . . , λd) whose
row lengths satisfy λ1 ≥ λ2 ≥ · · · ≥ λd and

∑
λi = n

[see Fig. 3]. We write H =
⊕

~λH~λ, where the ~λ-subspace

H~λ ⊂ H supports the ~λ-irrep. Any operator on H with
Sn × SU(d) symmetry has H~λ as eigenspaces.

In the EYD algorithm, one measures the Young dia-
gram on ρ̂⊗n. The distribution of outcomes Pr(~λ|n, ~p)
has a single peak near n~p [see Fig. 2(c)] with a typical
deviation

∑
i |λi

n − pi| of O(n−1/2) (for fixed d) [8].

The experimental complexity associated with changing
from the Sn×SU(d) irrep basis H~λ to the (generally eas-
ier to measure) computational basis makes implement-
ing the EYD algorithm [28] seem like a daunting task in
practice. The main result of this Letter is that the stan-
dard tool of Ramsey spectroscopy applied to fermionic
alkaline-earth atoms in a square-well trap naturally ac-
complishes essentially the same task, allowing for efficient
spectrum estimation.

A hint at why our proposal achieves this goal is that
the Hamiltonian restricted to the ground electronic state,
〈G| ĤD |G〉 = U

∑
j<k(1− ŝjk), is an operator on H with

Sn × SU(d) symmetry. Therefore 〈G| ĤD |G〉 has sub-
spaces H~λ as energy eigenspaces, which can be probed

by Ramsey spectroscopy. However the energies E(~λ) =
U
2 n(n− 1)− U

2

∑d
i=1 λi(λi− 2i+ 1) are not in one-to-one

correspondence with subspaces H~λ for d > 2 [see Fig. 3
for an example]. Therefore, even if it were possible exper-
imentally, direct measurement of the energy associated
with 〈G| ĤD |G〉 would not be sufficient to perform the
EYD algorithm. We will see that, remarkably, by access-
ing restrictions of ĤD to different electronic states, Ram-
sey spectroscopy is powerful enough to uniquely identify
~λ, thus enabling spectrum estimation.

Mean-field solution.—To infer the spectrum, we need

to calculate the Ramsey measurement expectation value,

〈n̂e(τ, ~p)〉
n

=
Tr (ρ̂⊗n n̂e(τ))

n
, (3)

defining n̂e(τ) := 〈G|W †V †Wn̂eW
†VW |G〉, which is an

operator on H with Sn×SU(d) symmetry. We now show
that, within the mean-field approximation, Eq. (3) can
be evaluated using the expression in Eq. (2).

Without loss of generality, we choose the eigenbasis of
the initial nuclear-spin density matrix ρ̂ as the nuclear
spin basis. At the mean-field level, time evolution under
ĤP and ĤD does not create coherence between different
nuclear spin states. Let ρrrµν be the entry 〈µr| ρ̂(τ) |νr〉
of the single-atom density-matrix ρ̂(τ), where µ, ν de-
note the electronic state (g or e), while r denotes nuclear
spin. Then the dark-time evolution keeps ρrrgg and ρrree
unchanged, while

∂ρrreg
∂τ

= i

[
δ − U(n− 1)

(
ρrrgg −

∑
r′

ρr
′r′

gg

)]
ρrreg. (4)

Putting this together with the two Ramsey pulses, we
recover Eq. (2) without the 1/

√
n correction. Since there

is at most one e atom in every site (spatial mode), the
variance of n̂e/n within the mean-field approximation is

〈(n̂e/n)2〉 − 〈n̂e/n〉2 =
〈n̂e/n〉 − 〈n̂e/n〉2

n
. (5)

This 1/
√
n standard deviation scaling is the same as that

of the deviation of the mean-field value of 〈n̂e(τ, ~p)〉/n
from its exact value [26]. However the exact expression
is still important for small n which would occur when
technical limitations prevent us from putting all available
atoms into the same trap or when atoms are produced
in small batches. In that case, we would need to repeat
the experiment many times and will be sensitive to the
deviation of the meanfield value from the exact result.
Therefore, we now evaluate Eq. (3) exactly.

Exact solution.—To avoid clutter, we drop hats on op-
erators and arrows on vectors and introduce abbrevia-
tions: c := cos β2 , s := sin β

2 . We define a basis |E〉 of
binary vectors, E = (E1, E2, ..., En) ∈ {0, 1}n, where the
kth atom is in electronic state |g〉 (|e〉) when Ek = 0
(Ek = 1). We also denote by |E| the number of 1’s in E.
Expanding W |G〉 in the |E〉 basis,

ne(τ) =
∑

E′,E∈{0,1}n
i|E
′|−|E|c2n−|E|−|E

′|s|E|+|E
′|

× 〈E′|V †WneW
†V |E〉 . (6)

Since WneW
† is a sum of single-atom operators, terms

in which strings E and E′ differ on more than one site
vanish. When E′ = E,

〈E|V †WneW
†V |E〉 = 〈E|WneW

† |E〉
= (n− |E|)s2 + |E|c2, (7)



4

since V |E〉 = eiδ|E|τ exp
[
−iα∑j<k/∈E(1− ŝjk)

]
|E〉.

Here α = Uτ , j < k /∈ E is a sum over all pairs j < k
such that Ej = 0 and Ek = 0. Terms with E′ = E
thereby sum to 2nc2s2 = n

2 sin2β in Eq. (6).
When E′ and E only differ on the kth atom such that

Ek = 1 and E′k = 0,

〈E′|V †WneW
†V |E〉= −icseiδτeiα

∑
j /∈E(1−sjk)︸ ︷︷ ︸
AE

, (8)

as e−iα
∑

j<l/∈E′ sjleiα
∑

j<l/∈E sjl = e−iα
∑

j /∈E sjk , which
holds since the exponents commute. Defining AE as
given by the underbrace, the contribution to the sum
in Eq. (6) of E and E′ that differ on a single atom is

−
n∑
k=1

∑
E∈{0, 1}n

Ek =1

c2n−2|E|+2s2|E|Tr
[
ρ⊗n(eiδτAE + e−iδτA†E)

]
. (9)

Note that Tr(ρ⊗nAE) is invariant under site permuta-
tion, and therefore depends only on |E|. For integer
w = 0, 1, ..., n − 1, define the convenient |E| = w + 1

representative operator Bw := eiα
∑n−w−1

j=1 (1−sjn). Then,

〈n̂e(τ, ~p)〉
n

=

sin2β

2

[
1−

n−1∑
w=0

Pr(w|n, β) Re {eiδτTr(ρ⊗nBw)}
]
, (10)

where Pr(w|n, β) :=
(
n−1
w

)
c2(n−w−1)s2w is the binomial

distribution obtained from expanding (s2 + c2)n−1 = 1.
We evaluate Tr(ρ⊗nBw) in two ways. The first way

(presented below) uses group representation theory and
illustrates the connection to the EYD algorithm, and
yields an expression that can be evaluated conveniently
numerically. The second approach (provided in the sup-
plement [26]), is used to prove that the asymptotic result
in Eq. (2) deviates from the exact result by Õ(1/

√
n).

As Tr(ρ⊗nBw) is invariant under Sn × SU(d) actions,

Tr(ρ⊗nBw) =
∑
λ

Pr(~λ|n, ~p)Trλ(Bw), (11)

where Pr(~λ|n, ~p) is the EYD probability distribution, and
Trλ is a trace over the λ-subspace Hλ. Now we show

Trλ(Bw)=eiα(n−w−1)
∑
ξ

Pr(ξ|w, λ)

d∑
r=1

‖ξ−r‖
‖ξ‖ e−iα(ξr−r), (12)

where the sum is over all irreps ξ of Sn−w, and

Pr(ξ|w, λ) := m(λ,ξ)‖ξ‖
‖λ‖ is a probability distribution de-

fined in terms of the multiplicity m(λ, ξ) of irrep ξ of
Sn−w when regarding λ as a (reducible) representation
of the subgroup Sn−w ⊂ Sn. For an irrep µ of Sm, its
dimension is denoted ‖µ‖, the length of the rth row is
µr, and µ−r is an irrep of Sm−1 defined by removing a
box from the r-th row of µ.

To begin, note Bw is composed of permutations in the
subgroup Sn−w of the first n − w − 1 sites, along with
the nth site. From this observation, we regard the repre-
sentation space λ as a representation of Sn−w, to obtain
a reducible representation λ|nn−w of Sn−w. Note that we
ignored the SU(d) Hilbert space and considered Sn alone
since AE is written in terms of elements of Sn, which are
each themselves SU(d) symmetric. This decomposes into
a direct sum of irreps ξ of Sn−w as λ|nn−w ∼=

⊕
ξm(λ, ξ)ξ.

The multiplicity m(λ, ξ) is the number of distinct paths
from λ to ξ, where each step in a path is a Young diagram,
with one box removed from the previous step [26]. Since
Bw is invariant under permutation of the first n− w − 1
sites, we can finally diagonalize Bw by further restrict-
ing each ξ-irrep of Sn−w to subgroup Sn−w−1 ⊂ Sn−w;
Bw must have each ξ−r-subspace as an eigenspace. The
eigenvalue of the ξ−r-subspace is eiα(n−w−1)e−iα(ξr−r) [26],
resulting in Eq. (12).

We have introduced three probability distributions
Pr(λ|n, p), Pr(w|n, β), and Pr(ξ|w, λ), all of which turn
out to be unimodal for large n. In the large n limit, the

unimodality together with the fact that ‖ξ
−r‖
‖ξ‖ →

ξr∑
j ξj

recovers the mean field result Eq. (2). For n and d which
are too large to evaluate 〈n̂e(τ, ~p)〉/n exactly, one can still
obtain a more precise estimate with this approach than
that given by Eq. (2) by dropping terms associated with
negligible contributions to the distributions [26].

Experimental considerations.—In Ref. [25] we suggest
an implementation to trap tens of 87Sr atoms in a square
well potential by freezing out the x and y directions using
a strong red-detuned laser such that ω⊥ = 2π × 10 kHz,
and “capping” the ends of the tube of length L ∼ 10µm
with a blue-detuned laser. These parameters and the s-
wave 87Sr scattering length agg = 5.1 nm [29] result in
U = (4πaggω⊥)/L ≈ 2π × 10 Hz, allowing one to trap
<∼ 20 atoms.

The relevant timescale for Eq.(2) is 1/(nU) ∼ 1 ms.

One can use a build-up cavity to increase barrier height
of the caps and ω⊥, allowing one to trap more atoms and
therefore carry out higher-resolution spectrum estima-
tion.

To avoid losses caused by e-e collisions, we propose
temporarily loosening the e trap during the dark time,
which is readily doable for our choice of internal states
[15]. This should be performed slowly with respect to ω⊥
and quickly with respect to U .

An experimentally simpler approach is to use β suffi-
ciently small as to make e-e interactions negligible; this
will, however, decrease the signal requiring additional
repetitions of the experiment. In the supplement, we
include e-g collisions in the mean-field treatment [26].
We include analysis of experimental imperfections in the
supplemental material [26].

Outlook.—We have shown that alkaline-earth atoms
can be used as a special-purpose quantum computer ca-
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pable of measuring the spectrum of a density matrix,
motivated by EYD. It is possible that many other use-
ful quantum information tasks can be accessed in similar
systems with special symmetry properties. In particular,
an important extension of our work would be to find an
efficient implementation of full-state tomography in cur-
rent experimental systems. On the other hand, it would
also be interesting to know if one can improve on our
proposal if one seeks to measure a simpler quantity than
the full spectrum [9], such as the purity.

Note.—While finalizing the manuscript, we learned of
a proposal [30] to perform spectrum estimation with Ry-
dberg atoms using a sequence of swap operations between
two copies of the system, controlled by an ancilla.
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