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The mass-imbalanced three-body recombination process that forms a shallow dimer is shown to
possess a rich Efimov-Stückelberg landscape, with corresponding spectra that differ fundamentally
from the homonuclear case. A semi-analytical treatment of the three-body recombination predicts an
unusual spectra with intertwined resonance peaks and minima, and yields in-depth insight into the
behavior of the corresponding Efimov spectra. In particular, the patterns of the Efimov-Stückelberg
landscape are shown to depend inherently on the degree of diabaticity of the three-body collisions,
which strongly affects the universality of the heteronuclear Efimov states.
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The infinite geometric progression of trimer states,
even when all the two-body subsystems are barely un-
bound consists of the most counterintuitive few-body
phenomenon, namely the Efimov effect [1, 2]. The exotic
Efimov states have received extensive theoretical and ex-
perimental study [3–11] addressing the underlying physi-
cal principles, such as the universality of the ground Efi-
mov state [12–19], and the discrete scaling invariance for
successive Efimov states for homonuclear [20] and het-
eronuclear systems, i.e. heavy-heavy-light (HHL), [21–
23]. Recent experimental evidence on mass-imbalanced
ensembles, suggests that the Efimov spectra possess a
far richer landscape than the homonuclear counterparts
[24–26] stemming from the large parameter space.

HHL systems possess two scattering lengths, i.e. aHH

and aHL which define four main categories of behavior ac-
cording to the signs alone since each aij can be positive or
negative. Additional sub-categories unfold depending on
magnitude, i.e. |aHH |/|aHL| ≷ 1. Spanning a large por-
tion of parameter space, Refs.[21, 22, 25, 27, 28] experi-
mentally and theoretically explored the three-body losses
of 6Li-133Cs-133Cs system demonstrating that the differ-
ent signs in the intraspecies scattering lengths (aCsCs ≷

0) render an inherently different Efimovian landscape.
Additional experimental efforts for the case aHH > 0
illustrate deviations of the universal theory from the ob-
served Efimov spectra [26] in the regime where the two-
body interspecies interactions, i.e. aHL are tuned via
narrow Fano-Feshbach resonances [29]. These investi-
gations pose the most intriguing questions in the few-
body physics of HHL systems: whether the three-body
physics is universal, whether the Efimov spectrum needs
a nonuniversal “3-body parameter” (3BP) to specify its
lowest state, and whether van der Waals (vdW) physics
approximately determines that 3BP, as experimental and
theoretical evidence suggests is true for the homonuclear
case [13, 14, 16–18, 30]. Therefore, a more flexible and
complete theoretical description of three-body recombi-

nation (3BR) into shallow dimers (aHH > 0) is needed.

This Letter develops a semiclassical theoretical treat-
ment based on the adiabatic hyperspherical representa-
tion with nonadiabatic coupling included addressing shal-
low dimer recombination for HHL systems. We demon-
strate that the universality for various observables in
this system is strongly affected by the degree of diabatic-

ity connecting the three-body continuum and recombi-
nation channels. Adiabatic collisions exhibit the Efimov
physics idiosyncrasies which depend only on the scatter-
ing lengths, rendering the three-body system fully uni-
versal. In contrast from the homonuclear case, heteronu-
clear systems with positive intraspecies and negative in-
terspecies interactions (i.e. aHH > 0 and aHL < 0, respec-
tively) exhibit 3BR rates whose landscape for varying
scattering lengths was previously predicted [31] to consist
of Efimov resonances intertwined with a series of Stück-
elberg interference minima [32, 33]. The present analy-
sis shows how the assumption of hyperradial adiabatic-
ity underlying the original prediction by D’Incao and
Esry[31] must be generalized when the relevant Landau-
Zener transition probability is closer to diabatic than adi-
abatic, as is true for strong mass-imbalanced systems.

Our prototype three-body system consists of two heavy
(H) atoms and a light (L) one, which collide at low en-
ergies via s-wave zero-range interactions. The 3BR into
a shallow heavy-heavy (HH) dimer and a recoiling light
atom is achieved by considering the intraspecies (inter-
species) interactions to possess positive (negative) scat-
tering length, i.e. aHH > 0 (aHL < 0). The parapherna-
lia of the adiabatic hyperspherical representation (for a
detailed review see [11]) is employed in the following ad-
dressing the three-body physics of interest. In this rep-
resentation the properly symmetrized total wavefunction
is written as Ψ(R,Ω) = R−5/2

∑

ν φν(R; Ω)Fν(R), where
φν(R; Ω) [Fν(R)] refers to the ν-th hyper-angular [hyper-
radial] component of Ψ(R,Ω). The hyperangular factor
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Figure 1. (Color on line) (a) The two lowest hyperspherical

potential curves U
1/3
ν ( R

aHH
) (orange and blue solid curves)

for a HHL system with mass ratio mH/mL = 22.1, aHL < 0,

aHH > 0 and the total energy Ē in units of ~
2

mHa2
HH

is indi-

cated as a black dotted line. The blue hatched area indicates
the 3BP at R = r3b whereas the gray region depicts the max-
imum of the P -matrix. The green dash-dotted and purple
dashed lines denote the dominant two interfering pathways.
(b) An illustration of the terms associated with the semiclas-
sical treatment and their connections to the curves shown in
panel (a).

is an eigenfunction of the fixed-R adiabatic equation [34]:

Had(R; Ω)φν(R; Ω) = Uν(R)φν(R; Ω), (1)

where Ω collectively denotes the five hyperangles whereas
R is the hyperradius [35, 36]. The Uν(R) are the adiabatic
hyperspherical potential curves and Had contains the hy-
perangular kinetic operator together with the pairwise
zero-range interactions. After integrating over all the hy-
perangles Ω, the three-body Schrödinger equation reads:

[

−
d2

dR2
+

2µ

~2
(Uν − E)

]

Fν(R) =
∑

ν′

Vνν′Fν′ (R), (2)

where µ = mH/
√

1 + 2mH/mL is the three-body re-
duced mass, mH (mL) denotes the mass of the heavy
(light) atom and E indicates the total relative energy.
Vνν′ = 2Pνν′(R) d

dR +Qνν′(R) are the R-dependent non-
adiabatic coupling matrix elements obeying the rela-
tions: Pνν′ = 〈φν(R; Ω)|

∂
∂Rφν′(R; Ω)〉

Ω
and Qνν′ =

〈φν(R; Ω)|
∂2

∂R2φν′(R; Ω)〉
Ω
. Note that the symbol 〈. . .〉Ω

indicates the integration over the hyper-angles only .
For zero-range interactions Uν , Pνν′ and Qνν′ are known
semi-analytically [3, 37–39].
Fig.1(a) illustrates within the two-channel approxima-

tion the physical picture of a shallow dimer recombina-
tion process with aHH > 0 and aHL < 0. In Fig.1(a) the

first two adiabatic potential curves U
1/3
ν (R) (solid blue

and orange lines) are depicted as functions of the scaled
hyper-radius R/aHH . The mass ratio between the heavy
and light particle is set mH/mL = 22.1 corresponding
to 6Li −133 Cs −133 Cs collisions. The 3BP is intro-
duced as a hard wall boundary condition at R = r3b [see
blue hatched area in Fig.1(a)], avoiding the Thomas col-

lapse [40]. The gray box in Fig.1(a) indicates the hyper-
radial region where the non-adiabatic coupling P -matrix
element maximizes, namely the non-adiabatic transition

region. At the indicated total relative energy Ē, writ-

ten in units of ~
2

mHa2
HH

[see dotted line in Fig.1(a)] and

R/aHH → ∞ the three particles are asymptotically free.
But as R/aHH decreases, the system tunnels inward un-
der the barrier probing the classically-allowed region of
the upper potential curve (blue solid line). Due to the
non-adiabatic coupling (see gray box) the three particles
can recombine to the lower potential curve (orange solid
line) forming a shallow HH dimer and a recoiling light
particle. To quantitatively address this physical process,
a fully semiclassical treatment of Eq. (2) is developed
within the two-channel approximation, yielding an ana-
lytical expression for the corresponding 3BR rate K3:

K3 =
64~π2

µk4
|S12|

2, with |S12|
2 = e−2τp(1− p)

N

D
,

N = cos2(ΦU
L − ΦL

L −
π

4
+ λ), D = (1−

e−4τ

16
)[p×

× cos2(ΦL
L +ΦU

R −
π

4
) + (1− p) cos2(ΦU

L +ΦU
R + λ)]

− (1−
e−2τ

4
)2p(1− p)N +

e−4τ

16
. (3)

Here k2 = 2µE/~2 and |S12|
2 denotes the S-matrix el-

ement describing the 3BR into a universal shallow dimer.
Fig.1(b) depicts the terms that appear in Eq. (3). The
terms Φi

α with i = L,U and α = L,R indicate the JWKB
phases (including the Langer correction [32]) of the upper
(i = U) and lower (i = L) potential curves of Fig.1(a) on
the left (α = L) and right hand side (α = R) of the transi-
tion region, i.e. the gray box of Fig.1(a). The asymptotic
phases of the upper and lower curves are indicated by ΦU

∞

and ΦL
∞, respectively, and of course the |S12|

2 does not
depend on them. Note that ΦU

∞ is defined from the outer
classical turning point of the upper Efimov curve whereas
ΦL

∞ is defined from hyperradii beyond the non-adiabatic
transition region. In Fig.1(b) the factor e−τ indicates
the tunneling amplitude in the classically-forbidden re-
gion of the upper potential curve [see the blue solid line
in Fig.1(a)]. The 3BP is indicated in Fig.1(b) by the far
left black box.
The phase λ, and the term p in Eq. (3) as well as the

term TLZ in Fig.1(b) are associated with the Landau-
Zener physics [41]. p indicates the non-adiabatic tran-
sition probability from the upper to the lower potential
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curve shown in Fig.1(a) which is evaluated by the P -
matrix elements [42]. The phase λ is associated with
the pass of the hyper-radial wavefunction through the
non-adiabatic transition region and solely depends on the
probability p [43, 44]. This non-trivial phase is necessary
for an accurate 3BR coefficient, as our numerical tests
suggest. The TLZ ≡ TLZ(λ, p) denotes the non-adiabatic
transition matrix which inter-relates the adiabatic hyper-
radial wavefunction bilaterally of the transition region as
shown in Fig.1(a) [43, 44].

The analytical expression of K3 in Eq. (3) conveys
the most important attributes of a recombination process
into a shallow HH dimer for the HHL system. The key
role is played here by the degree of diabaticity, namely
the non-adiabatic probability p in K3 and inherently
modifies the properties of the Efimov spectra whereas
in the homonuclear cases the corresponding p is triv-
ially an overall pre-factor in K3. The resonant enhance-
ment of K3 mainly arises due to the resonant denomi-
nator D in Eq. (3) which explicitly depends on the non-
adiabatic transition probability p. Hence, the Efimov
spectra are influenced by the degree of diabaticity of
the three-body collisions. For example, in a mostly dia-
batic collisions, i.e. p ≈ 1, the Efimov resonances in K3

depend on the phase ΦL
L which is defined by the 3BP

[see Fig.1(b)]. For adiabatic three-body collisions, i.e.
p ≈ 0, K3 is virtually independent of the ΦL

L phase.
Therefore, a mostly adiabatic 3BR process possesses a
fully universal Efimov spectrum which is independent of
any 3BP. This adiabatic limit was stressed in the case
of vdW two-body interactions study presented by Refs.
[24, 25]. The probability p in general depends mainly on

the |aHL|
aHH

and the mass ratio β = mH

mL
but in principle

it could be affected by the vdW physics in realistic sce-
narios. In Fig.2(d) p varies monotonically in the interval

(0.55, 0.87) for |aHL|
aHH

∈ (4.2, 123.4), respectively, match-
ing the regime of Refs.[24–26] around B = 889 G. In the

unitarity limit ( |aHL|
aHH

→ ∞), p obeys the fitting relation

p∞ ∼ e−
16

2β+1
+0.22 for 2.3 < β < 23 to a good approxi-

mation. The latter implies that large mass ratios yield
mostly diabatic 3BR processes.

Eq. (3) exhibits also signatures of Stückelberg physics.
The numerator of |S12|

2 depends on the phases ΦU
L and

ΦL
L emerging from a two-pathway interference [see green

dash-dotted and purple dashed lines in Fig.1(a)] and
can cause a suppression of K3, i.e. Stückelberg min-

ima which is non-universal due to the ΦL
L phase. Note

that the semiclassical theory developed here for K3 in
Eq. (3) generalizes and extends the study by Ref.[31],
through our inclusion of the explicit dependence on the
non-adiabatic probability p. This analysis also provides
a systematic pathway to generalize Eq. (3) to positive
inter- and intraspecies interactions going beyond previ-
ous studies [45, 46].

Our calculated 3BR coefficient is illustrated in Fig.2
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Figure 2. (color online) The scaled 3BR coefficient mCsK3

~a4
LiCs

at

low energy Ē (in units of ~
2

mHa2
HH

) for 6Li−133Cs−133Cs sys-

tem as a function of two ratios: the 3BP r3b/aCsCs and the in-
terspecies scattering length |aLiCs|/aCsCs. Panels (b)-(c) show
the scaled 3BR calculations within the semiclassical treatment
and the R-matrix numerical simulations, respectively. Panel
(d) depicts the probability p versus |aLiCs|/aCsCs.

where the system of 6Li −133 Cs −133 Cs is considered.
Fig.2 depicts the scaled 3BR coefficient, mCsK3

~a4
LiCs

, at low

energies Ē (in units of ~
2

mHa2
HH

), as a function of the ra-

tios r3b
aCsCs

and |aLiCs|
aCsCs

. Fig.2(a) refers to a direct numerical
solution of Eq. (2) within the two-channel approximation
using the R-matrix propagation method (for details see
Refs.[47, 48]). Panel(a) conveys the rich structure that
arises in the 3BR coefficient. The enhancements in K3

a4
LiCs

emerge from metastable Efimov states that resonantly
transfer probability flux from the three-body continuum
into the atom-dimer continuum via the non-adiabatic re-
gion (see the red stripes in the contour plot of Fig.2(a)).
Within the zero-range approximation the position of the
Efimov resonances K3

a4
LiCs

depend on the 3BP, i.e. r3b
aCsCs

since for this system the three-body collisions is closer
to being a diabatic process. K3

a4
LiCs

also exhibits Stückel-

berg minima (see the green stripes in the contour plot
of Fig.2(a)) which are virtually insensitive to variations

of the ratio |aLiCs|
aCsCs

. This feature of coexisting Efimov
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Figure 3. (color online) The scaled 3BR mCsK3

~a4
LiCs

at Ē →

0 for 6Li −133 Cs −133 Cs using Eq. (4). Panels (a)-(c)
correspond to different non-adiabatic probabilities, namely
p = (0.8, 0.4, 0.1) respectively. Panels (d) and (e) present
schematic illustrations of the diabatic and adiabatic hyper-
spherical potentials, respectively. The magenta dash-dotted
line indicates the quasi-bound Efimov state and the gray box
depicts the 3BP.

resonances and Stückelberg minima is inherent in HHL
systems with aHL < 0 and aHH > 0. In contrast,
for homonuclear recombination processes that produce a
shallow dimer, at positive scattering lengths one observes
only Stückelberg minima.

In the 6Li −133 Cs −133 Cs system the Stückelberg

minima persist even at |aLiCs|
aCsCS

< 4. The latter corre-
sponds to magnetic fields 891 ≤ B ≤ 950 G where the

ratio |aLiCs|
aCsCS

∈ (4.27, 0.05) and aCsCs ∈ (227 a0, 991 a0)
providing enough parameter tunability in order to exper-
imentally probe the Stückelberg minima. From Ref.[49],
the 3BR rates are suppressed for Cs atoms at B = 893 G.
Additional Stückelberg physics in the Li− Cs2 channel
might enable the production of a gas of two bosonic
species that keeps high densities throughout a cooling
process as was also discussed in Ref.[50].

Fig.2(b, c) compare the scaled 3BR rates calculated
with the Eq. (3) and with the R-matrix theory, respec-
tively, showing good agreement. Fig.2(b, c) exhibit two
different log-periodic scaling behaviors versus the axis of
r3b

aCsCs
and |aLiCs|

aCsCs
, a distinct feature of the Efimov physics

in this system.

In the spirit of Ref.[51], the |S12|
2 matrix elements in

Eq. (3) can be further approximated focusing thus on the
diabaticity and log-periodicity of the K3. When E is the

lowest energy scale in the system, the upper and lower
adiabatic potential curves illustrated in Fig.1(a) can be

parametrized as U1(R) = − ~
2

2µ
s20+1/4

R2 (for aHH ≪ R ≪

|aHL|) and U2(R) = − ~
2

2µ
(s∗0)

2+1/4
R2 (for R ≪ aHH ≪

|aHL|), respectively. As in Ref.[52], s0 (s∗0) corresponds
to a universal Efimov scaling coefficient for two (three)
resonant interactions. Then |S12|

2 simplifies to:

|S12|
2

(kaHL)4
=

p(1− p) cos2
(

s∗0 ln
r3b
aHH

+ ψ1

)

P( r3b
aHH

, |aHL|
aHH

)
, (4)

where P( r3b
aHH

, |aHL|
aHH

) = p sin2[s0 ln
|aHL|
aHH

+ ψ2 −

(s∗0 ln
r3b
aHH

+ ψ1)] + (1− p) cos2(s0 ln
|aHL|
aHH

+ ψ2)− p(1−

p) cos2(s∗0 ln
r3b
aHH

+ψ1). ψ1 and ψ2 are arbitrary constant
phases and are treated as fitting parameters. Note that
Eq. (4) is valid for |aHL| ≫ aHH ≫ r3B. Elegantly,
Eq. (4) shows that |S12|

2 depends on two geometric scal-
ings where s∗0 (s0) solely determines the Stückelberg min-
ima (Efimov resonances). Note that in the limit of large
mass ratio, s∗0 ≈ s0. Fig.3(a-c) illustrates the effects of
diabaticity in K3

a4
HL

using Eq. (4) within two successive

Stückelberg minima where the non-adiabatic probability
p is parametrically adjusted, i.e. panels (a-c) correspond
to p = (0.8, 0.4, 0.1), respectively. Note that the uni-
versal scaling factors s0 and s∗0 are taken from Ref.[52]
for the physical system of 6Li −133 Cs −133 Cs whereas
the phases ψ1 and ψ2 are arbitrarily chosen. Evidently,
Fig.3(a-c) unravels the universal aspects of the Efimov
resonances in terms of the degree of diabaticity. Fig.3(a)
depicts the predominantly diabatic regime (p = 0.8)
where the positions of the Efimov resonances strongly de-
pend on the ratio r3b

aCsCs
, namely, on the 3BP. Notice that

the trajectories of the resonant enhancements, namely
Efimov manifolds , shift upwards as r3b

aCsCs
increases. In-

tuitively, this effect is best understood in the diabatic
picture, see Fig.3(d), where the “diabatized” hyperspher-
ical curves are shown whereas the magenta dash-dotted
line indicates the Efimov metastable state. The diabatic
potential curve (solid line) which supports the Efimov
states depends on the 3BP (gray box). Therefore, the
energy of an Efimov quasi-bound state remains in reso-
nance only by simultaneously increasing the 3BP and the
|aHL|
aHH

. Note that the maximum of the potential barrier
in Fig.3(e) increases as Rb ∼ 0.34|aHL|mH/µ.
Interestingly, in the adiabatic limit, shown in Fig.3(c)

for p = 0.1, the Efimov resonance manifolds acquire
universal characteristics and become virtually indepen-
dent of the 3BP. This attribute can be understood by
inspecting the potential curves of Fig.3(e) showing the
adiabatic version of the potential curves. Fig.3(c) shows
that the 3BP only weakly affects the Efimov quasi-bound
states (see the magenta dash-dotted line) due to the re-
pulsive barrier at small hyperradius (see the blue solid
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line) which shields the three particles from exploring the
non-universal region that depends on the 3BP.

In the diabatic-to-adiabatic regime, see Fig.3(b) [p =
(0.4)], the Efimov manifolds undergo a rearrangement

where at r3b
aCsCs

≈ 0.05 each manifold is “interrupted” and
for p = 0.1 [see Fig.3(c)] is “reattached” with the next
one. This effect is mainly related to the widths of the
Efimov resonances with respect to r3b

aCsCs
. Particularly, in

all the panels of Fig. 3 the Efimov manifolds are broader
at r3b

aCsCs
≈ 0.05 whereas close to the Stückelberg minima

they become narrower. This dependence of the width
of the Efimov resonances on the 3BP can be understood
in terms of the two dominant interfering paths for the
recombination into a shallow dimer (see dashed and dot-
dashed lines in Fig.1(a)). Close to the Stückelberg min-
ima due to the destructive interference of the two path-
ways, the Efimov quasi-bound state is weakly coupled
to the atom-dimer continuum, yielding a narrow Efimov
manifold. But for r3b

aCsCs
≈ 0.05 the two pathways inter-

fere constructively; hence, the trimer metastable state is
strongly coupled to the continuum broadening the Efi-
mov manifolds. Fig.3(b) demonstrates that for p = 0.4
the two pathways interfere maximally yielding maximally
broad Efimov manifolds that are completely smeared out
by the atom-dimer continuum.

Conclusions- The detailed idiosyncrasies of the Efi-
mov physics for mass-imbalanced ultracold systems are
investigated, with a focus on recombination processes
into shallow HH dimer states. Our semiclassical anal-
ysis is based on the adiabatic hyperspherical represen-
tation including the Landau-Zener physics, yielding a
closed-form expression for the corresponding 3BR rate.
A rich Efimov-Stückelberg landscape is illustrated from
our analysis as a unique feature of the mass-imbalanced
systems where the degree of diabaticity constrains the
Efimovian universality. Namely, a diabatic recombi-
nation processes depends strongly on the 3BP. In the
diabatic-to-adiabatic regime, the Efimov state mani-
folds exhibit a rearrangement effect and illustrate the
transition from system-dependent Efimov resonances to
system-independent ones. The present development can
be generalized to include vdW two-body interactions in
order to elucidate the extent to which the 3BP is con-
strained beyond the zero-range theories.
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